Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00014
Number of page(s) 16
DOI https://doi.org/10.1051/e3sconf/202560100014
Published online 16 January 2025
  1. S. Lu, Y. P. Sanchez Perdomo, X. Jiang, and B. Zheng, “Integrating Eye-Tracking to Augmented Reality System for Surgical Training,” J. Med. Syst., vol. 44, no. 11, 2020, doi: 10.1007/s10916-020-01656-w. [Google Scholar]
  2. J. K. Bologna, C. A. Garcia, A. Ortiz, P. X. Ayala, and M. V. Garcia, “An augmented reality platform for training in the industrial context,” IFAC-PapersOnLine, vol. 53, no. 3, pp. 197–202, 2020, doi: 10.1016/j.ifacol.2020.11.032. [CrossRef] [Google Scholar]
  3. P. Wang, P. Wu, J. Wang, H. L. Chi, and X. Wang, “A critical review of the use of virtual reality in construction engineering education and training,” Int. J. Environ. Res. Public Health, vol. 15, no. 6, 2018, doi: 10.3390/ijerph15061204. [Google Scholar]
  4. J. J. Ortega-Gras, M. V. Gómez-Gómez, M. V. Bueno-Delgado, J. Garrido-Lova, and G. Cañavate-Cruzado, “Designing a Technological Pathway to Empower Vocational Education and Training in the Circular Wood and Furniture Sector through Extended Reality,” Electron., vol. 12, no. 10, 2023, doi: 10.3390/electronics12102328. [Google Scholar]
  5. Y. Tan, W. Xu, S. Li, and K. Chen, “Augmented and virtual reality (AR/VR) for education and applications,” Buildings, vol. 12, no. 10, pp. 1529–1553, 2022. [CrossRef] [Google Scholar]
  6. P. Horejsí, “Augmented reality system for virtual training of parts assembly,” Procedía Eng., vol. 100, no. January, pp. 699–706, 2015, doi: 10.1016/).proeng.2015.01.422. [Google Scholar]
  7. K. A. Herrera, J. A. Rocha, F. M. Silva, and V. H. Andaluz, “Training Systems for Control of Mobile Manipulator Robots in Augmented Reality,” Iber. Conf. Inf. Syst. Technol. Cist., vol. 2020-June, 2020, doi: 10.23919/CISTI49556.2020.9141012. [Google Scholar]
  8. D. M. Bruening et al., “360° 3D virtual reality operative video for the training of residents in neurosurgery,” Neurosurg. Focus, vol. 53, no. 2, 2022, doi: 10.3171/2022.5.FOCUS2261. [Google Scholar]
  9. H. Si, J. G. Shi, D. Tang, S. Wen, W. Miao, and K. Duan, “Application of the theory of planned behavior in environmental science: a comprehensive bibliometric analysis,” Int. J. Environ. Res. Public Health, vol. 16, no. 15, 2019, doi: 10.3390/ijerph16152788. [Google Scholar]
  10. I. M. Katz, R. S. Rauvola, C. W. Rudolph, and H. Zacher, “Employee green behavior: A metaanalysis,” Corp. Soc. Responsib. Environ. Manag., vol. 29, no. 5, pp. 1146–1157, 2022, doi: 10.1002/csr.2260. [Google Scholar]
  11. S. Sutton, Theory of Planned Behaviour. London: Cambridge University Press, 2009. [Google Scholar]
  12. A. de Leeuw, P. Valois, I. Ajzen, and P. Schmidt, “Using the theory of planned behavior to identify key beliefs underlying pro-environmental behavior in high-school students: Implications for educational interventions,” J. Environ. Psychol., vol. 42, no. June, pp. 128–138, 2015, doi: 10.1016/j.jenvp.2015.03.005. [Google Scholar]
  13. E. Correia, S. Sousa, C. Viseu, and J. Leite, “Using the theory of planned behavior to understand the students’ pro-environmental behavior: a case-study in a Portuguese HEI,” Int. J. Sustain. High. Educ., vol. 23, no. 5, pp. 1070–1089, 2022, doi: 10.1108/IJSHE-05-2021-0201. [Google Scholar]
  14. V. Blok, R. Wesselink, O. Studynka, and R. Kemp, “Encouraging sustainability in the workplace: A survey on the pro-environmental behaviour of university employees,” J. Clean. Prod., vol. 106, pp. 55–67, 2015, doi: 10.1016/j.jclepro.2014.07.063. [Google Scholar]
  15. E. Clark, K. Mulgrew, L. Kannis-Dymand, V. Schaffer, and R. Hoberg, “Theory of planned behaviour: predicting tourists’ pro-environmental intentions after a humpback whale encounter,” J. Sustain. Tour., vol. 27, no. 5, pp. 649–667, 2019, doi: 10.1080/09669582.2019.1603237. [Google Scholar]
  16. F. Aziz, A. A. M. Rami, Z. Zaremohzzabieh, and S. Ahrari, “Effects of emotions and ethics on pro-environmental behavior of university employees: A model based on the theory of planned behavior,” Sustain., vol. 13, no. 13, 2021, doi: 10.3390/su13137062. [Google Scholar]
  17. A. Yuriev, M. Dahmen, P. Paillé, O. Boiral, and L. Guillaumie, “Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review,” Resour. Conserv. Recycl., vol. 155, no. August 2019, p. 104660, 2020, doi: 10.1016/j.resconrec.2019.104660. [Google Scholar]
  18. H. Han, “Travelers’ pro-environmental behavior in a green lodging context: Converging valuebelief-norm theory and the theory of planned behavior,” Tour. Manag., vol. 47, pp. 164–177, 2015, doi: 10.1016/j.tourman.2014.09.014. [Google Scholar]
  19. I. I. I. I. M. Butaslac, Y. Fujimoto, T. Sawabe, M. Kanbara, and H. Kato, “Systematic Review of Augmented Reality Training Systems,” IEEE Trans. Vis. Comput. Graph., vol. 29, no. 12, pp. 5062–5082, 2023, doi: 10.1109/TVCG.2022.3201120. [Google Scholar]
  20. B. Czerkawski and M. Berti, “Learning experience design for augmented reality,” Res. Learn. Technol., vol. 29, no. 1063519, pp. 1–12, 2021, doi: 10.25304/rlt.v29.2429. [Google Scholar]
  21. B. Herbert, B. Ens, A. Weerasinghe, M. Billinghurst, and G. Wigley, “Design considerations for combining augmented reality with intelligent tutors,” Comput. Graph., vol. 77, pp. 166–182, 2018, doi: 10.1016/j.cag.2018.09.017. [Google Scholar]
  22. R. M. Viglialoro et al., “Augmented Reality to Improve Surgical Simulation: Lessons Learned Towards the Design of a Hybrid Laparoscopic Simulator for Cholecystectomy,” IEEE Trans. Biomed. Eng., vol. 66, no. 7, pp. 2091–2104, 2019, doi: 10.1109/TBME.2018.2883816. [Google Scholar]
  23. J. Blattgerste, K. Luksch, C. Lewa, and T. Pfeiffer, “Trainar: A scalable interaction concept and didactic framework for procedural trainings using handheld augmented reality,” Multimodal Technol. Interact., vol. 5, no. 7, 2021, doi: 10.3390/mti5070030. [Google Scholar]
  24. V. Chimienti, S. Iliano, M. Dassisti, G. Dini, and F. Failli, “Guidelines for implementing augmented reality procedures in assisting assembly operations,” IFIP Adv. Inf. Commun. Technol., vol. 315, pp. 174–179, 2010, doi: 10.1007/978-3-642-11598-1_20. [Google Scholar]
  25. E. Yafi, S. Tehseen, and S. A. Haider, “Impact of green training on environmental performance through mediating role of competencies and motivation,” Sustain., vol. 13, no. 10, pp. 1–15, 2021, doi: 10.3390/su13105624. [Google Scholar]
  26. J. Wang, Y. Xue, X. Sun, and J. Yang, “Green learning orientation, green knowledge acquisition and ambidextrous green innovation,” J. Clean. Prod., vol. 250, 2020, doi: 10.1016/j.jclepro.2019.119475. [Google Scholar]
  27. M. Barba-Aragon and D. Jiménez-Jiménez, “Is training a green innovation driver? The mediating role of knowledge acquisition,” J. Knowl. Manag., 2023. [Google Scholar]
  28. F. T. Moradeke, G. K. Ishola, and O. L. Okikiola, “Green Training and Development Practices on Environmental Sustainability: Evidence from WAMCO PLC,” J. Educ. Manag. Soc. Sci., vol. 1, no. 2, pp. 1–19, 2021, doi: 10.48112/jemss.v1i2.212. [Google Scholar]
  29. J. Liu, Y. Liu, and L. Yang, “Uncovering the influence mechanism between top management support and green procurement: The effect of green training,” J. Clean. Prod., vol. 251, p. 119674, 2020, doi: 10.1016/j.jclepro.2019.119674. [Google Scholar]
  30. P. Paillé, P. Valéau, and D. W. Renwick, “Leveraging green human resource practices to achieve environmental sustainability,” J. Clean. Prod., vol. 260, 2020, doi: 10.1016/j.jclepro.2020.121137. [Google Scholar]
  31. M. A. V. Molina, A. F. Sainz, and J. I. Olaizola, “Environmental knowledge and other variables affecting pro-environmental behaviour : comparison of university students from emerging and advanced countries,” Journal of Cleaner Production, vol. 61. pp. 130–138, 2013. [CrossRef] [Google Scholar]
  32. G. Liobikiene and M. S. Poskus, “The importance of environmental knowledge for private and public sphere pro-environmental behavior: Modifying the Value-Belief-Norm theory,” Sustain., vol. 11, no. 12, 2019, doi: 10.3390/su10023324. [Google Scholar]
  33. P. Diaz-Siefer, A. Neaman, E. Salgado, J. L. Celis-Diez, and S. Otto, “Human-environment system knowledge: A correlate of pro-environmental behavior,” Sustain., vol. 7, no. 11, pp. 15510–15526, 2015, doi: 10.3390/su71115510. [Google Scholar]
  34. M. Ienna et al., “The Relative Role of Knowledge and Empathy in Predicting ProEnvironmental Attitudes and Behavior,” Sustain., vol. 14, no. 8, 2022, doi: 10.3390/su14084622. [Google Scholar]
  35. R. Gifford and A. Nilsson, “Personal and social factors that influence pro-environmental concern and behaviour: A review,” Int. J. Psychol., vol. 49, no. 3, pp. 141–157, 2014, doi: 10.1002/ijop.12034. [Google Scholar]
  36. M. Tamar, H. Wirawan, T. Arfah, and R. P. S. Putri, “Predicting pro-environmental behaviours: the role of environmental values, attitudes and knowledge,” Manag. Environ. Qual. An Int. J., vol. 32, no. 2, pp. 328–343, 2021, doi: 10.1108/MEQ-12-2019-0264. [Google Scholar]
  37. A. Kollmus and J. Agyeman, “Mind the Gap : Why Do People Act Environmentally and What Are the Barriers Mind the Gap : why do people act environmentally and what are the barriers to,” Environ. Educ. Res., no. August 2002, pp. 37–41, 2015, doi: 10.1080/1350462022014540. [Google Scholar]
  38. I. Hossain, M. Nekmahmud, and M. Fekete-Farkas, “How Do Environmental Knowledge, EcoLabel Knowledge, and Green Trust Impact Consumers’ Pro-Environmental Behaviour for Energy-Efficient Household Appliances?,” Sustain., vol. 14, no. 11, pp. 1–16, 2022, doi: 10.3390/su14116513. [Google Scholar]
  39. A. Donmez-Turan and I. E. Kiliclar, “The analysis of pro-environmental behaviour based on ecological worldviews, environmental training/ knowledge and goal frames,” J. Clean. Prod., vol. 279, p. 123518, 2021, doi: 10.1016/j.jclepro.2020.123518. [Google Scholar]
  40. J. Ahuja, M. Yadav, and R. P. Sergio, “Green leadership and pro-environmental behaviour: a moderated mediation model with rewards, self-efficacy and training,” Int. J. Ethics Syst., vol. 39, no. 2, pp. 481–501, 2023, [Online]. Available: https://doi.org/10.1108/IJOES-02-2022-0041 [Google Scholar]
  41. J. Xie and C. Lu, “Relations among Pro-Environmental Behavior, Environmental Knowledge, Environmental Perception, and Post-Materialistic Values in China,” Int. J. Environ. Res. Public Health, vol. 19, no. 1, 2022, doi: 10.3390/ijerph19010537. [Google Scholar]
  42. S. M. Geiger, M. Geiger, and O. Wilhelm, “Environment-specific vs. general knowledge and their role in pro-environmental behavior,” Front. Psychol., vol. 10, no. APR, 2019, doi: 10.3389/fpsyg.2019.00718. [Google Scholar]
  43. M. Mansoor and T. I. Wijaksana, “Predictors of pro-environmental behavior: Moderating role of knowledge sharing and mediatory role of perceived environmental responsibility,” J. Environ. Plan. Manag., vol. 66, no. 5, pp. 1089–1107, 2023, doi: 10.1080/09640568.2021.2016380. [Google Scholar]
  44. P. Liu, M. Teng, and C. Han, “How does environmental knowledge translate into proenvironmental behaviors?: The mediating role of environmental attitudes and behavioral intentions,” Sci. Total Environ., vol. 728, p. 138126, 2020, doi: 10.1016/j.scitotenv.2020.138126. [Google Scholar]
  45. W. J. Boone, M. S. Yale, and J. R. Staver, Rasch analysis in the human sciences. New York: Springer US, 2014. doi: 10.1007/978-94-007-6857-4. [Google Scholar]
  46. B. Sumintono, Model Rasch untuk Penelitian Ilmu-Ilmu Sosial, November 2. Trim Komunikata, 2014. [Google Scholar]
  47. B. Bin Saeed, B. Afsar, S. Hafeez, I. Khan, M. Tahir, and M. A. Afridi, “Promoting employee’s proenvironmental behavior through green human resource management practices,” Corp. Soc. Responsib. Environ. Manag., vol. 26, no. 2, pp. 424–438, 2019, doi: 10.1002/csr.1694. [Google Scholar]
  48. B. Afsar, S. Cheema, and F. Javed, “Activating employee’s pro-environmental behaviors: The role of CSR, organizational identification, and environmentally specific servant leadership,” Corp. Soc. Responsib. Environ. Manag., vol. 25, no. 5, pp. 904–911, 2018, doi: 10.1002/csr.1506. [Google Scholar]
  49. I. Ghozali, Partial Least Squares Menggunakan Program SmartPLS 3.2.9. Jakarta: Badan Penerbit Universitas Diponegoro, 2021. [Google Scholar]
  50. M. Sarstedt, G. T. M. Hult, C. M. Ringle, and J. F. Hair, A primer on partial least squares structural equation modeling (PLS-SEM). California USA: SAGE Publications, Inc., 2014. doi: 10.1007/978-3-319-05542-8_15-2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.