Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00019
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202560100019
Published online 16 January 2025
  1. Viet NV, Wang Q. Ocean wave energy pitching harvester with a frequency tuning capability. Energy 2018;162:603e17. [Google Scholar]
  2. Gui P, Deng F, Liang Z, Cai Y, Chen J. Micro linear generator for harvesting mechanical energy from the human gait. Energy 2018;154:365e73. [Google Scholar]
  3. Xin Y, Tian H, Guo C, Li X, Sun H, Wang P, Qian C, Wang S, Wang C. A biomimetic tactile sensing system based on polyvinylidene fluoride film. Rev Sci Instrum 2016;87(2):025002. [CrossRef] [PubMed] [Google Scholar]
  4. Kymissis J, Kendall C, Paradiso J, Gershenfeld N. In: Parasitic power harvesting in shoes 2nd IEEE Int. Conf, on wearable computers (cat. No. 98EX215); 1998. p. 132e9. [Google Scholar]
  5. Tuncel, Yigit and Bandyopadhyay, Shiva and Kulshrestha, Shambhavi V. and Mendez, Audrey and Ogras, Umit Y. Towards wearable piezoelectric energy harvesting: modeling and experimental validation, 2020, 9781450370530. [Google Scholar]
  6. Feng Qian, Tian-Bing Xu, Lei Zuo, Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism, Energy, Volume 189, 2019, 116140, ISSN 0360-5442. [CrossRef] [Google Scholar]
  7. Almouahed S et al 2011 The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking IEEE-ASME T. Mech. 16 799–807. [CrossRef] [Google Scholar]
  8. Almouahed S, Hamitouche C and Stindel E 2016 Selfpowered device for tibiofemoral force measurement in knee implant 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (IEEE). [Google Scholar]
  9. Rocha J G et al 2010 Energy harvesting from piezoelectric materials fully integrated in footwear IEEE T. Ind. Electron. 57 813–9. [CrossRef] [Google Scholar]
  10. Shenck NS, Paradiso JA. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 2001;21:30e42. [CrossRef] [Google Scholar]
  11. Qian F, Xu TB, Zuo L. Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Convers Manag 2 [Google Scholar]
  12. Gonzalez J L, Rubio A and Moll F 2002 Human powered piezoelectric batteries to supply power to wearable electronic devices Int. J. Soc. of Mat. Eng. Resour. 10 34–40Z [CrossRef] [Google Scholar]
  13. L. Meirovitch, “Fundamentals of vibrations,” New York: McGraw-Hill Book Co., 2001. [Google Scholar]
  14. Shen D, Park JH, Noh JH, Choe SY, Kim SH, Wikle HC III, Kim DJ (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens Actuat A 154(1): 103. [CrossRef] [Google Scholar]
  15. Yu H, Zhou J, Deng L, Wen Z (2014) A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit. Sensors 14(2):3323. [CrossRef] [PubMed] [Google Scholar]
  16. Zhang G, Gao S, Liu H, Niu S (2017) A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: theory and experiment. Microsystem Technologies 23(8):3457. [CrossRef] [Google Scholar]
  17. S. N. Chen, G. J. Wang, and M. C. Chien, “Analytical modeling of piezoelectric vibration-induced micro power generator,” Mechatronics 16, 379–387 (2006). [CrossRef] [Google Scholar]
  18. G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, “Adaptive piezoelectric energy harvesting circuit for wireless remote power supply,” IEEE Transactions on Power Electronics 17, 669–676 (2002). [CrossRef] [Google Scholar]
  19. Ylli K, Hoffmann D, Willmann A, Becker P, Folkmer B, Manoli Y. Energy harvesting from human motion: exploiting swing and shock excitations. Smart Mater Struct 2015;24(2):025029. [CrossRef] [Google Scholar]
  20. Feng Qian and Tian-Bing Xu and Lei Zuo, Design, optimization, modeling and testing of a piezoelectric footwear energy harvester, Energy Conversion and Management, 2018, 0196–8904. [Google Scholar]
  21. Thien Hoang. Dispositif de récupération d’énergie piézoélectrique : modélisation, fabrication et caractérisation. Electronique. Université de Tours, 2019. Français. ffNNT: ff. fftel-03216575ff. [Google Scholar]
  22. Sylvain Drapier. Dynamics of Solids and Structures. École des Mines de Saint-Étienne. Saint-Étienne, France 2016 https://www.emse.fr/~drapier/index_fichiers/CoursPDF/Dynamique-3A/Dynamique-SDrapierjanvier2012.pdf) [Google Scholar]
  23. Wu, Liao, Peidong Zhu, and Minghua Xie. 2021. "A Self-Powered Hybrid SSHI Circuit with a Wide Operation Range for Piezoelectric Energy Harvesting" Sensors 21, no. 2: 615. https://doi.org/10.3390/s21020615 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.