Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00024
Number of page(s) 17
DOI https://doi.org/10.1051/e3sconf/202560100024
Published online 16 January 2025
  1. M. K. Mohan, A. V. Rahul, G. De Schutter, and K. Van Tittelboom, Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cem. Concr. Compos. 115, 103855 (2021). https://doi.org/10.1016/j.cemconcomp.2020.103855. [Google Scholar]
  2. Y. A. Al-Noaimat, S. H. Ghaffar, M. Chougan, and M. J. Al-Kheetan, A review of 3D printing low-carbon concrete with one-part geopolymer: Engineering, environmental and economic feasibility. Case Stud. Constr. Mater. 18, e01818 (2023). https://doi.org/10.1016/j.cscm.2022.e01818. [Google Scholar]
  3. P. Wu, J. Wang, and X. Wang, A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 68, 21–31 (2016). https://doi.org/10.1016/j.autcon.2016.04.005. [Google Scholar]
  4. G. L. F. Benachio, M. do C. D. Freitas, and S. F. Tavares, Circular economy in the construction industry: A systematic literature review. J. Clean. Prod. 260, 121046, (2020). https://doi.org/10.1016/j.jclepro.2020.121046. [Google Scholar]
  5. K. Gamage, S. Fawzia, T. Zahra, M. B. F. Teixeira, and N. H. Ramli Sulong, Advancement in Sustainable 3D Concrete Printing: A Review on Materials, Challenges, and Current Progress in Australia. Buildings, 14, (2024). https://doi.org/10.3390/buildings14020494. [Google Scholar]
  6. S. Inayath Basha, A. Ur Rehman, H. R. Khalid, M. A. Aziz, and J. H. Kim, 3D Printable Geopolymer Composites Reinforced with Carbon-Based Nanomaterials - A Review. Chem. Rec. 10. 202300054 (2023). https://doi.org/10.1002/tcr.202300054. [Google Scholar]
  7. N. Rihani, I. Akhrif, M. El Jai, and L. Mohamed, Finite Element modeling and convergence analysis of a new Biomimetic Branching Structures. Stat. Optim. Inf. Comput. 12, 713–726 (2024). https://doi.org/10.19139/SOIC-2310-5070-1964. [Google Scholar]
  8. N. Rihani, I. Akhrif, and M. El Jai, Proposition and design of a new MicroArchitected Domes family: A biomimicry-based approach. Front. Archit. Res. 13, 650–667 (2024). https://doi.org/10.1016/j.foar.2024.01.004. [Google Scholar]
  9. K. El Abbaoui, I. Al Korachi, M. El Jai, B. Seta, and M. T. Mollah, 3D concrete printing using computational fluid dynamics: Modeling of material extrusion with slip boundaries. J. Manuf. Process. 118, 448–459 (2024). https://doi.org/10.1016/j.jmapro.2024.03.042. [Google Scholar]
  10. M. Dadkhah, J. M. Tulliani, A. Saboori, and L. Iuliano, Additive manufacturing of ceramics: Advances, challenges, and outlook. J. Eur. Ceram. Soc. 43, 6635–6664 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.07.033. [Google Scholar]
  11. N. Youssef, A. Z. Rabenantoandro, Z. Lafhaj, Z. Dakhli, F. Hage Chehade, and L. Ducoulombier, A novel approach of geopolymer formulation based on clay for additive manufacturing. Constr. Robot. 5, 175–190 (2021). https://doi.org/10.1007/s41693-021-00060-1. [Google Scholar]
  12. K. Ouazzani, I. Akhrif, N. Rihani, M. El Jai, M. Radouani, and B. El Fahime, Processing Parameters, Heat-Treatment, and Testing Speed influence on Tensile properties of ABS-FDM materials. Moroccan J. Chem. 12, 1621–1663 (2024). https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i4.50175. [Google Scholar]
  13. K. Ouazzani, M. El Jai, I. Akhrif, M. Radouani, and B. El Fahime, An experimental study of FDM parameter effects on ABS surface quality: roughness analysis. Int. J. Adv. Manuf. Technol. 127, 151–178 (2023). https://doi.org/10.1007/s00170-023-11435-9. [Google Scholar]
  14. K. Ouazzani, M. El Jai, and B. Elfahime, Detailed classification of FDM (Fused Deposition Modeling) process parameters and potentially affected Part characteristics. 2022 2nd Int. Conf. Innov. Res. Appl. Sci. Eng. Technol. IRASET 2022, (2022). https://doi.org/10.1109/IRASET52964.2022.9738432. [Google Scholar]
  15. M. El Jai, N. Saidou, M. Zineddine, and H. Bachiri, Mathematical design and preliminary mechanical analysis of the new lattice structure: ‘GE-SEZ*’ structure processed by ABS polymer and FDM technology. Prog. Addit. Manuf. 6, 93–118 (2021). https://doi.org/10.1007/s40964-020-00148-0. [Google Scholar]
  16. M. El Jai, I. Akhrif, and N. Saidou, Skeleton-based perpendicularly scanning: a new scanning strategy for additive manufacturing, modeling and optimization. Prog. Addit. Manuf. 6, 781–820 (2021). https://doi.org/10.1007/s40964-021-00197-z. [Google Scholar]
  17. M. El Jai and I. Akhrif, SBPar scanning : Toward a complete optimal skeleton scan strategy for Additive Manufacturing. (2024). [Google Scholar]
  18. N-C. Igwe, I. Akhrif, and M. El Jai, An experimental investigation of the influence of SLM input factors on the as-built AlSi10Mg surface quality. Int. J. Adv. manuufacturing Technol. (2024). https://doi.org/10.1007/s00170-024-14657-7. [Google Scholar]
  19. K. Fri, A. Laazizi, M. Bensadaa, M. El Alami, A. Ouannou, I. Akhrif, M. El Jai, and J, Fajoui, Microstructural and heat treatment analysis of 316L elaborated by SLM additive manufacturing process. Int. J. Adv. Manuf. Technol. 124, 2289–2297, (2023). https://doi.org/10.1007/s00170-022-10622-4. [Google Scholar]
  20. K. Fri, I. Akhrif, A. Laazizi, M. El Jai, M. Bensada, and A. Ouannou, Experimental investigation of the effects of processing parameters and heat treatment on SS 316L manufactured by laser powder bed fusion. Prog. Addit. Manuf. (2023). https://doi.org10.1007/s40964-023-00538-0. [Google Scholar]
  21. F. Z. Oulkhir, I. Akhrif, and M. El Jai, 3D concrete printing success: an exhaustive diagnosis and failure modes analysis. Prog. Addit. Manuf. (2024). https://doi.org/10.1007/s40964-024-00638-5. [Google Scholar]
  22. A. Curth, N. Pearl, A. Castro-Salazar, C. Mueller, and L. Sass, 3D printing earth: Local, circular material processing, fabrication methods, and Life Cycle Assessment. Constr. Build. Mater., 421, 135714 (2024). https://doi.org/10.1016/j.conbuildmat.2024.135714. [Google Scholar]
  23. Y. Maierdan, M. Samuel J, Armistead Rebecca A, Q. Huang, B.-A. Lola, S. I. Wil V, and K. Shiho, Rheology and 3D printing of alginate bio-stabilized earth concrete. Cem. Concr. Res. 175, 107380 (2024). https://doi.org/10.1016/j.cemconres.2023.107380. [Google Scholar]
  24. A. Perrot, D. Rangeard, and E. Courteille, 3D printing of earth-based materials: Processing aspects. Constr. Build. Mater. 172, 670–676 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.017. [Google Scholar]
  25. F. Faleschini, D. Trento, M. Masoomi, C. Pellegrino, and M. A. Zanini, Sustainable mixes for 3D printing of earth-based constructions. Constr. Build. Mater., 398, 132496 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132496. [Google Scholar]
  26. S. Ruckrich, G. Agranati, and Y. J. Grobman, Earth-based additive manufacturing: A field-oriented methodology for evaluating material printability. Archit. Sci. Rev. 66, 133–143 (2023). https://doi.org/10.1080/00038628.2022.2154739. [Google Scholar]
  27. A. Paolini, S. Kollmannsberger, and E. Rank, Additive manufacturing in construction : A review on processes, applications, and digital planning methods. Addit. Manuf. 30, (2019). https://doi.org/10.1016/j.addma.2019.100894. [Google Scholar]
  28. A. U. Rehman, Jung-Hoon, and Kim, 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials (Basel). 14, 1–43 (2021, https://doi.org/10.3390/ma14143800. [Google Scholar]
  29. S. C. Paul, Y. W. D. Tay, B. Panda, and M. J. Tan, Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch. Civ. Mech. Eng. 18, 311–319 (2018). https://doi.org/10.1016/j.acme.2017.02.008. [Google Scholar]
  30. M. Abdollahi, M. Alboofetileh, M. Rezaei, and R. Behrooz, Comparing physico- mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocoll. 32, 416–424 (2013). https://doi.org/10.1016/j.foodhyd.2013.02.006. [Google Scholar]
  31. N. D. B. Mignon, Arn, Didier Snoeck, Kenny D’Halluin, Lieve Balcaen, Frank Vanhaecke, Peter Dubruel, Sandra Van Vlierberghe, Alginate biopolymers: Counteracting the impact of superabsorbent polymers on mortar strength. Constr. Build. Mater. 110, 169–174 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.033. [Google Scholar]
  32. M. El Halim, L. Daoudi, M. El Ouahabi, and N. Fagel, Characterization of clays from the Fez area (northern Morocco) for potential uses in the ceramics industry. Clay Miner. 57, 139–149 (2022). https://doi.org/10.1180/clm.2022.30. [Google Scholar]
  33. L. Mesrar, I. Akhrif, and R. Jabrane, Technological Characterization of the Miocene Marl in the Region of Taza (Morocco): Exploitation Possibilities. Int. J. Res. Sci. 2, 8–13 (2014). [Google Scholar]
  34. L. Qin, C. Guo, Q. Guo, H. Yi, and F. Jia, 3D montmorillonite aerogel/SA composite phase change materials with mechanically strong strength and superior thermal energy storage performances. Miner. Miner. Mater. 2, (2023). https://doi.org/10.20517/mmm.2023.20. [Google Scholar]
  35. R. Surya, M. D. Mullassery, N. B. Fernandez, and D. Thomas, Synthesis and characterization of a clay-alginate nanocomposite for the controlled release of 5-Flurouracil, J. Sci. Adv. Mater. Devices, 4, 432–441 (2019). https://doi.org/10.1016/j.jsamd.2019.08.001. [CrossRef] [Google Scholar]
  36. S. Ghyati, S. Kassou, M. El Jai, E. H. El Kinani, and M. Benhamou, Investigation of PEG4000/Natural clay-based hybrids: Elaboration, characterization and theory. Mater. Chem. Phys. 239, (2020). https://doi.org/10.1016/j.matchemphys.2019.121993. [Google Scholar]
  37. A. Maged, S. A. Abu El-Magd, A. E. Radwan, S. Kharbish, and S. Zamzam, Evaluation insight into Abu Zenima clay deposits as a prospective raw material source for ceramics industry: Remote Sensing and Characterization. Sci. Rep. 13, 1–16, (2023). https://doi.org/10.1038/s41598-022-26484-5. [Google Scholar]
  38. S. Hajji, T. Turki, A. Boubakri, M. Ben Amor, and N. Mzoughi, Study of cadmium adsorption onto calcite using full factorial experiment design. Desalin. Water Treat. 83, 222–233 (2017). https://doi.org/10.5004/dwt.2017.21079. [Google Scholar]
  39. S. Bhagyaraj and I. Krupa, Alginate-mediated synthesis of hetero-shaped silver nanoparticles and their hydrogen peroxide sensing ability. Molecules, 25, (2020), https://doi.org/10.3390/molecules25030435. [CrossRef] [PubMed] [Google Scholar]
  40. F. Sentanin, C. Caliman, WR. Sabadini, RC. Cavalheiro, R. Pereira, M. Silva, and A. Pawlicka, Nanocomposite polymer electrolytes of sodium alginate and montmorillonite clay. Molecules, 26, 1–11 (2021). https://doi.org/10.3390/molecules26082139. [Google Scholar]
  41. B. Achiou, H. El Omari, J. Bennazha, A. Albizane, L. Daoudi, L. Saadi, M. Ouammou, SA. Younssi, A. El Maadi, Physicochemical and mineralogical characterizations of clays from Fez region (basin of Saiss, Morocco) in the perspective of industrial use. J. Mater. Environ. Sci, 7, 1474–1484, (2016). [Google Scholar]
  42. I. Akhrif, L. Mesrar, M. E. L. Jai, M. Benhamou, and R. Jabrane, Elaboration and X-Ray Diffraction Techniques Characterization of clay-PEG 6000 Nanocomposites with clay Matrix. 3, 564–571 (2015). [Google Scholar]
  43. I. Akhrif, M. El Jai, L. Mesrar, A. Elkhalfi, A. Touache, and R. Jabrane, Physical Characterization and Elaboration Discussion of a Clay-PEG 6000 Composite with Natural Clay Matrix. Engineering, 6, 338–354 (2014). https://doi.org/10.4236/eng.2014.67037. [CrossRef] [Google Scholar]
  44. J. P. Engbert, Alexander, Stefanie Gruber, The effect of alginates on the hydration of calcium aluminate cement. Carbohydr. Polym. 236, (2020). https://doi.org/10.1016/j.carbpol.2020.116038. [Google Scholar]
  45. Y. Zhang, Y. Zhang, G. Liu, Y. Yang, M. Wu, and B. Pang, Fresh properties of a novel 3D printing concrete ink. Constr. Build. Mater. 174, 263–271 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.115. [Google Scholar]
  46. E. Keita and A. Perrot, Processing of earth-based materials: current situation and challenges ahead. RILEM Tech. Lett. 8, 141–149 (2023). https://doi.org/10.21809/rilemtechlett.2023.186. [Google Scholar]
  47. S. Kabir, An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst. Appl. 77, 114–135 (2017), https://doi.org/10.1016/j.eswa.2017.01.058. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.