Open Access
Issue |
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
|
|
---|---|---|
Article Number | 00035 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/e3sconf/202560100035 | |
Published online | 16 January 2025 |
- I. Taj and N. Z. Jhanjhi, “Towards Industrial Revolution 5.0 and Explainable Artificial Intelligence: Challenges and Opportunities,” Int. J. Comput. Digit. Syst., vol. 12, no. 1, pp. 285–310, 2022, doi: 10.12785/ijcds/120124. [Google Scholar]
- H. Yetis, M. Karakose, and N. Baygin, “Blockchain-based mass customization framework using optimized production management for industry 4.0 applications,” Eng. Sci. Technol. an Int. J., vol. 36, p. 101151, 2022, doi: 10.1016/j.jestch.2022.101151. [Google Scholar]
- X. Zhang and X. Ming, “A Smart system in Manufacturing with Mass Personalization (S-MMP) for blueprint and scenario driven by industrial model transformation,” J. Intell. Manuf., vol. 34, no. 4, pp. 1875–1893, 2023. [Google Scholar]
- U. Joshi and S. Vidyavihar, “Role of Information Technology in mass customization of the manufacturing process Mass Customisation for Consumer Electronics Industry View project,” no. August, 2021, [Online]. Available: www.IJARIIT.com [Google Scholar]
- M. Xia and Y. He, “Research on the Construction of Smart Factory for Mass Personalization Production,” 2020 IEEE Conf. Telecommun. Opt. Comput. Sci. TOCS 2020, pp. 247–251, 2020, doi: 10.1109/TOCS50858.2020.9339751. [Google Scholar]
- S. J. Hu, “Evolving paradigms of manufacturing: From mass production to mass customization and personalization,” Procedia CIRP, vol. 7, pp. 3–8, 2013, doi: 10.1016/j.procir.2013.05.002. [CrossRef] [Google Scholar]
- Y. Wang, H. S. Ma, J. H. Yang, and K. S. Wang, “Industry 4.0: a way from mass customization to mass personalization production,” Adv. Manuf., vol. 5, no. 4, pp. 311–320, 2017, doi: 10.1007/s40436-017-0204-7. [Google Scholar]
- A. T. Espinoza Pérez, D. A. Rossit, F. Tohmé, and Ó. C. Vásquez, “Mass customized/personalized manufacturing in Industry 4.0 and blockchain: Research challenges, main problems, and the design of an information architecture,” Information Fusion, vol. 79. pp. 44–57, 2022. doi: 10.1016/j.inffus.2021.09.021. [CrossRef] [Google Scholar]
- M. Javaid, A. Haleem, R. P. Singh, R. Suman, and E. S. Gonzalez, “Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability,” Sustain. Oper. Comput., vol. 3, no. September 2021, pp. 203–217, 2022, doi: 10.1016/j.susoc.2022.01.008. [Google Scholar]
- J. Tiihonen and A. Felfernig, “An introduction to personalization and mass customization,” J. Intell. Inf. Syst., vol. 49, no. 1, pp. 1–7, 2017, doi: 10.1007/s10844-017-0465-4. [Google Scholar]
- I. A. R. Torn and T. H. J. Vaneker, “Mass personalization with industry 4.0 by SMEs: A concept for collaborative networks,” Procedia Manuf., vol. 28, pp. 135–141, 2019, doi: 10.1016/j.promfg.2018.12.022. [Google Scholar]
- F. D. Keskin, K. Ventura, H. Soyuer, and I. Kabasakal, “From mass customization to product personalization in automotive industry: potentials of industry 4.0,” Pressacademia, vol. 4, no. 3, pp. 244–250, 2017, doi: 10.17261/pressacademia.2017.486. [CrossRef] [Google Scholar]
- H. Katoozian and M. K. Zanjani, “Supply network design for mass personalization in Industry 4.0 era,” Int. J. Prod. Econ., vol. 244, no. October 2021, p. 108349, 2022, doi: 10.1016/j.ijpe.2021.108349. [Google Scholar]
- S. Aheleroff, N. Mostashiri, X. Xu, and R. Y. Zhong, “Mass Personalisation as a Service in Industry 4.0: A Resilient Response Case Study,” Adv. Eng. Informatics, vol. 50, no. October, p. 101438, 2021, doi: 10.1016/j.aei.2021.101438. [CrossRef] [Google Scholar]
- F. Adrian and G. Dr\uaghici, “LITERATURE REVIEW OF PRODUCT DEVELOPMENT IN MASS PERSONALIZATION AND MASS INDIVIDUALIZATION,” ACTA Tech. NAPOCENSIS- Series Appl. Math. Mech. Eng., vol. 65, no. 3S, 2023. [Google Scholar]
- Q. D. Nguyen, Y. Huang, F. Keith, C. Leroy, M. T. Thi, and S. Dhouib, “Manufacturing 4.0: Checking the Feasibility of a Work Cell Using Asset Administration Shell and Physics-Based Three-Dimensional Digital Twins,” Machines, vol. 12, no. 2, 2024, doi: 10.3390/machines12020095. [Google Scholar]
- N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” J. Bus. Res., vol. 133, no. March, pp. 285–296, 2021, doi: 10.1016/j.jbusres.2021.04.070. [Google Scholar]
- M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for comprehensive science mapping analysis,” J. Informetr., vol. 11, no. 4, pp. 959–975, 2017, doi: 10.1016/j.joi.2017.08.007. [Google Scholar]
- M. Kriouich, H. Sarir, and O. Mahboub, “Application of Artificial Intelligence in the Supply Chain: A Systematic Literature Review,” in International Conference On Big Data and Internet of Things, 2023, pp. 388–401. [Google Scholar]
- J. Barata, J. C. S. Cardoso, and P. R. Cunha, “Mass customization and mass personalization meet at the crossroads of Industry 4.0: A case of augmented digital engineering,” Syst. Eng., no. March, pp. 1–13, 2023, doi: 10.1002/sys.21682. [Google Scholar]
- S. Aheleroff, R. Philip, R. Y. Zhong, and X. Xu, “The degree of mass personalisation under industry 4.0,” Procedia CIRP, vol. 81, no. March, pp. 1394–1399, 2019, doi: 10.1016/j.procir.2019.04.050. [CrossRef] [Google Scholar]
- W. C. Uduwela, R. K. J. De Silva, and T. D. Rupasinghe, “Digital transformations in the apparel value chain for mass personalization,” IEEE Int. Conf. Ind. Eng. Eng. Manag., vol. 2020-Decem, pp. 450–454, 2020, doi: 10.1109/IEEM45057.2020.9309852. [Google Scholar]
- H. E. E. Boer, K. Nielsen, and T. D. Brunoe, “Can the SME successfully adopt mass customization?,” in Customization 4.0: Proceedings of the 9th World Mass Customization \& Personalization Conference (MCPC 2017), Aachen, Germany, November 20th-21st, 2017, 2018, pp. 531–549. [Google Scholar]
- N. Wang, “Mass Customization Capabilities: Literature Review,” in The Sixth International Conference on Information Management and Technology, 2021, pp. 1–5. [Google Scholar]
- X. Zhang, X. Ming, and Y. Bao, “A flexible smart manufacturing system in mass personalization manufacturing model based on multi-module-platform, multi-virtual-unit, and multi-production-line,” Comput. Ind. Eng., vol. 171, no. June, p. 108379, 2022, doi: 10.1016/j.cie.2022.108379. [Google Scholar]
- X. Ye, Y. Lu, and S. Manoharan, “Automated conversion of engineering rules: Towards flexible manufacturing collaboration,” Results Eng., vol. 16, no. July, p. 100680, 2022, doi: 10.1016/j.rineng.2022.100680. [Google Scholar]
- E. Ferrari, M. Gamberi, F. Pilati, and A. Regattieri, “Motion Analysis System for the digitalization and assessment of manual manufacturing and assembly processes,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 411–416, 2018, doi: 10.1016/j.ifacol.2018.08.329. [CrossRef] [Google Scholar]
- R. Wuthrich and L. A. Hof, “Low Batch Size Production of Glass Products requiring Micrometer Precision,” IFAC-PapersOnLine, vol. 52, no. 10, pp. 319–322, 2019, doi: 10.1016/j.ifacol.2019.10.050. [CrossRef] [Google Scholar]
- G. Baranauskas, “Mass Personalization vs. Mass Customization: Finding Variance in Semantical Meaning and Practical Implementation between Sectors,” Soc. Transform. Contemp. Soc., vol. 2019, no. 7, pp. 6–15, 2019. [Google Scholar]
- Z. Qin and Y. Lu, “A Knowledge Graph-based knowledge representation for adaptive manufacturing control under mass personalization,” Manuf. Lett., vol. 35, pp. 96–104, 2023, doi: 10.1016/j.mfglet.2023.08.086. [Google Scholar]
- P. Fatur and K. KaVi, “Influence of value chain redesign to variety/cost balance in consumer goods industry,” Int. J. Bus. Syst. Res., vol. 6, no. 2, pp. 109–122, 2012, doi: 10.1504/IJBSR.2012.046351. [Google Scholar]
- J. H. Chen-Yu and J. H. Yang, “Consumer characteristics as predictors of purchase intentions and willingness to pay a premium for men’s mass-customized apparel,” J. Glob. Fash. Mark., vol. 11, no. 2, pp. 154–170, 2020, doi: 10.1080/20932685.2020.1728702. [Google Scholar]
- T. Aichner and P. Coletti, “Customers’ online shopping preferences in mass customization,” J. Direct, Data Digit. Mark. Pract., vol. 15, no. 1, pp. 20–35, 2013, doi: 10.1057dddmp.2013.34. [Google Scholar]
- M. Ozdemir, J. Verlinden, and G. Cascini, “Design methodology for mass personalisation enabled by digital manufacturing,” Des. Sci., vol. 8, pp. 1–42, 2022, doi: 10.1017/dsj.2022.3. [Google Scholar]
- B. Schuebert, D. Shah, J. Mullis, F. Mozaffar, and B. Morkos, “THE IMPACT OF COVID-19 ON MASS PERSONALIZATION SUPPLY CHAIN NETWORKS - A QUALITATIVE INQUIRY,” in Proceedings of the ASME Design Engineering Technical Conference, 2023, pp. 1–12. doi: 10.1115/DETC2023-117191. [Google Scholar]
- S. Li, P. Zheng, J. Fan, and L. Wang, “Toward Proactive Human-Robot Collaborative Assembly: A Multimodal Transfer-Learning-Enabled Action Prediction Approach,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8579–8588, 2022, doi: 10.1109/TIE.2021.3105977. [Google Scholar]
- S. Kim and K. Lee, “The paradigm shift of mass customisation research,” Int. J. Prod. Res., vol. 61, no. 10, pp. 3350–3376, 2023, doi: 10.1080/00207543.2022.2081629. [Google Scholar]
- Z. Qin and Y. Lu, “Multi-agent-based self-organizing manufacturing network towards mass personalization,” Proc. ASME 2021 16th Int. Manuf. Sci. Eng. Conf. MSEC 2021, vol. 2, no. April, 2021, doi: 10.1115/MSEC2021-63990. [Google Scholar]
- S. Aheleroff, X. Xu, and R. Y. Zhong, “An Open-Source Private Blockchain Implementation in Mass Personalisation for Industry 4.0 era,” Proc. Int. Conf. Comput. Ind. Eng. CIE, vol. 2, no. February, pp. 755–767, 2023. [Google Scholar]
- A. Thavaneswaran, R. K. Thulasiram, M. E. Hoque, and S. S. Appadoo, “Data-Driven Fuzzy Demand Forecasting Models for Resilient Supply Chains,” 2021 IEEE Symp. Ser. Comput. Intell. SSCI 2021 - Proc., 2021, doi: 10.1109/SSCI50451.2021.9659992. [Google Scholar]
- S. Bouchard, S. Gamache, and G. Abdulnour, “Operationalizing Mass Customization in Manufacturing SMEs—A Systematic Literature Review,” Sustain., vol. 15, no. 4, 2023, doi: 10.3390/su15043028. [Google Scholar]
- P. Jain, S. Garg, and G. Kansal, “Issues and challenges of mass customization,” Mater. Today Proc., no. xxxx, 2023, doi: 10.1016/j.matpr.2023.03.408. [Google Scholar]
- R. Barbosa, R. Santos, and P. Novais, “Addressing Consumer Demands: A Manufacturing Collaboration Process Using Blockchain for Knowledge Representation,” in Proceedings of SAI Intelligent Systems Conference, 2021, pp. 375–390. [Google Scholar]
- J. Patalas-Maliszewska, K. Kowalczewska, M. Rehm, H. Schlegel, and G. Pajak, “Managing Production for Mass Customized Manufacturing--Case Studies,” in International Conference on Intelligent Systems in Production Engineering and Maintenance, 2023, pp. 160–170. [Google Scholar]
- A. Alhijaily, P. Bartolo, and T. Alhijaily, “Remote monitoring and controlling of an additive manufacturing machine,” in Industry 4.0--Shaping The Future of The Digital World, CRC Press, 2020, pp. 188–192. [CrossRef] [Google Scholar]
- A. Raza, L. Haouari, M. Pero, and N. Absi, “Impacts of Industry 4.0 on the Specific Case of Mass Customization Through Modeling and Simulation Approach,” Springer Proc. Bus. Econ., vol. 113, no. June 2023, pp. 217–234, 2018, doi: 10.1007/978-3-319-77556-2_14. [Google Scholar]
- L. A. Hof and R. Wuthrich, “Industry 4.0 - Towards fabrication of mass-personalized parts on glass by Spark Assisted Chemical Engraving (SACE),” Manuf. Lett., vol. 15, pp. 76–80, 2018, doi: 10.1016/j.mfglet.2017.12.003. [Google Scholar]
- B. Li, X. Wu, D. Zhang, Y. Wang, J. Yang, and K. Wang, “Production Control Method and DEMO Study of Mass Personalization Production in Industry 4.0,” in International Workshop of Advanced Manufacturing and Automation, 2022, pp. 450–457. [Google Scholar]
- S. Ahel Eroff and R. Zhong, “Iot-enabled personalisation for smart products and services in the context of industry 4.0,” in International Conference on Computers \& Industrial Engineering 2018 (CIE48), 2018. [Google Scholar]
- C. Martinez-Olvera and J. Mora-Vargas, “A comprehensive framework for the analysis of Industry 4.0 value domains,” Sustain., vol. 11, no. 10, pp. 1–21, 2019, doi: 10.3390/su11102960. [Google Scholar]
- E. Hofmann, “Supply Chain Management: Strategy, Planning and Operation, S. Chopra, P. Meindl,” 2013. [Google Scholar]
- K. Grobler-Debska, E. Kucharska, B. Zak, J. Baranowski, and A. Domagala, “Implementation of Demand Forecasting Module of ERP System in Mass Customization Industry—Case Studies f,” Appl. Sci., vol. 12, no. 21, 2022, doi: 10.3390/app122111102. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.