Open Access
Issue |
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
|
|
---|---|---|
Article Number | 00042 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202560100042 | |
Published online | 16 January 2025 |
- P. L. McMahon, “The physics of optical computing,” Nature Reviews Physics 2023 5:12, vol. 5, no. 12, pp. 717–734, Oct. 2023, doi: 10.1038/s42254-023-00645-5. [Google Scholar]
- R. Soref, “The past, present, and future of silicon photonics,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1678–1687, Nov. 2006, doi: 10.1109/JSTQE.2006.883151. [CrossRef] [Google Scholar]
- P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Materials Today, vol. 9, no. 10, pp. 36–45, Oct. 2006, doi: 10.1016/S1369-7021(06)71652-2. [CrossRef] [Google Scholar]
- L. N. Quan, J. Kang, C. Z. Ning, and P. Yang, “Nanowires for Photonics,” Chem Rev, vol. 119, no. 15, pp. 9153–9169, Aug. 2019, doi: 10.1021/ACS.CHEMREV.9B00240/ASSET/IMAGES/MEDIUM/CR-2019-00240S_0014.GIF. [CrossRef] [PubMed] [Google Scholar]
- E. Pelucchi et al., “The potential and global outlook of integrated photonics for quantum technologies,” Nature Reviews Physics 2021 4:3, vol. 4, no. 3, pp. 194–208, Dec. 2021, doi: 10.1038/s42254-021-00398-z. [Google Scholar]
- J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning,” Journal of Lightwave Technology, vol. 37, no. 1, pp. 110–115, Jan. 2019, doi: 10.1109/JLT.2018.2878327. [CrossRef] [Google Scholar]
- K. Wei et al., “High-Speed Measurement-Device-Independent Quantum Key Distribution with Integrated Silicon Photonics,” Phys Rev X, vol. 10, no. 3, p. 031030, Sep. 2020, doi: 10.1103/PHYSREVX.10.031030/FIGURES/15/MEDIUM. [Google Scholar]
- M. Avesani et al., “Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics,” npj Quantum Inf, vol. 7, no. 1, Dec. 2021, doi: 10.1038/s41534-021-00421-2. [CrossRef] [Google Scholar]
- B. J. Shastri et al., “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photon., vol. 15, no. 2, pp. 102–114, Feb. 2021, doi: 10.1038/s41566-020-00754-y. [Google Scholar]
- D. M. Kita et al., “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nature Communications 2018 9:1, vol. 9, no. 1, pp. 1–7, Oct. 2018, doi: 10.1038/s41467-018-06773-2. [Google Scholar]
- A. Z. Subramanian et al., “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res., vol. 3, no. 5, pp. B47–B59, Oct. 2015, doi: 10.1364/prj.3.000b47. [Google Scholar]
- E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science (1979), vol. 311, no. 5758, pp. 189–193, Jan. 2006, doi: 10.1126/SCIENCE.1114849. [Google Scholar]
- D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 2010 4:2, vol. 4, no. 2, pp. 83–91, Jan. 2010, doi: 10.1038/nphoton.2009.282. [Google Scholar]
- M. Born et al., “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light,” Principles of Optics, Oct. 1999, doi: 10.1017/CB09781139644181. [CrossRef] [Google Scholar]
- L. Ranno et al., “Highly efficient fiber to Si waveguide free-form coupler for foundry-scale silicon photonics,” Photonics Research, Vol. 12, Issue 5, pp. 1055–1066, vol. 12, no. 5, pp. 1055–1066, May 2024, doi: 10.1364/PRJ.514999. [Google Scholar]
- C. Lacava, P. Minzioni, R. Marchetti, K. Gradkowski, and L. Carroll, “Coupling strategies for silicon photonics integrated chips [Invited],” Photonics Research, Vol. 7, Issue 2, pp. 201–239, vol. 7, no. 2, pp. 201–239, Feb. 2019, doi: 10.1364/PRJ.7.000201. [Google Scholar]
- J. Ma et al., “A review of crosstalk research for plasmonic waveguides,” Opto-Electronic Advances, vol. 2, no. 4, pp. 180022–1, 2019, doi: 10.29026/OEA.2019.180022. [Google Scholar]
- M. Johnson, M. Johnson, M. G. Thompson, and D. Sahin, “Low-loss, low-crosstalk waveguide crossing for scalable integrated silicon photonics applications,” Optics Express, Vol. 28, Issue 9, pp. 12498–12507, vol. 28, no. 9, pp. 12498–12507, Apr. 2020, doi: 10.1364/OE.381304. [CrossRef] [Google Scholar]
- Y. Su, Y. Zhang, C. Qiu, X. Guo, and L. Sun, “Silicon Photonic Platform for Passive Waveguide Devices: Materials, Fabrication, and Applications,” Adv Mater Technol, vol. 5, no. 8, p. 1901153, Aug. 2020, doi: 10.1002/ADMT.201901153. [CrossRef] [Google Scholar]
- S. Kim and R. Yan, “Recent developments in photonic, plasmonic and hybrid nanowire waveguides,” J Mater Chem C Mater, vol. 6, no. 44, pp. 11795–11816, Nov. 2018, doi: 10.1039/C8TC02981D. [CrossRef] [Google Scholar]
- E. Betzig and J. K. Trautman, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,” Science (1979), vol. 257, no. 5067, pp. 189–195, Jul. 1992, doi: 10.1126/SCIENCE.257.5067.189. [Google Scholar]
- D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nature Communications 2012 3:1, vol. 3, no. 1, pp. 1–9, Nov. 2012, doi: 10.1038/ncomms2176. [Google Scholar]
- W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 2003 424:6950, vol. 424, no. 6950, pp. 824–830, 2003, doi: 10.1038/nature01937. [Google Scholar]
- T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, vol. 391, no. 6668. Nature Publishing Group, 1998. doi: 10.1038/35570. [Google Scholar]
- E. Khaidarov et al., “Control of LED Emission with Functional Dielectric Metasurfaces,” Laser Photon Rev, vol. 14, no. 1, p. 1900235, Jan. 2020, doi: 10.1002/LPOR.201900235. [Google Scholar]
- H. Mangach et al., “Symmetrical anisotropy enables dynamic diffraction control in photonics,” Optics Express, Vol. 31, Issue 19, pp. 30863–30875, vol. 31, no. 19, pp. 30863–30875, Sep. 2023, doi: 10.1364/OE.491396. [Google Scholar]
- H. Mangach, Y. El Badri, A. Hmima, A. Bouzid, Y. Achaoui, and S. Zeng, “Asymmetrical Dimer Photonic Crystals Enabling Outstanding Optical Sensing Performance,” Nanomaterials 2023, Vol. 13, Page 375, vol. 13, no. 3, p. 375, Jan. 2023, doi: 10.3390/NAN013030375. [Google Scholar]
- P. S. J. Russell, “Optics of Floquet-Bloch waves in dielectric gratings,” Applied Physics B Photophysics and Laser Chemistry, vol. 39, no. 4, pp. 231–246, Apr. 1986, doi: 10.1007/BF00697490/METRICS. [CrossRef] [Google Scholar]
- M. Grabowski, Photonic Band Gaps and Localization, vol. 308. in NATO ASI Series, vol. 308. Boston, MA: Springer US, 1993. doi: 10.1007/978-1-4899-1606-8. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.