Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00056
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202560100056
Published online 16 January 2025
  1. E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K.-H. Kim, Solar energy: Potential and future prospects, Renewable and Sustainable Energy Reviews 82, 894 (2018). [CrossRef] [Google Scholar]
  2. A. Al-Sharafi, A. B. Ahmadullah, G. Hassan, H. Al-Qahtani, A. A. Abubakar, and B. S. Yilbas, Influence of environmental dust accumulation on the performance and economics of solar energy systems: A comprehensive review, Cleaner Energy Systems 8, 100125 (2024). [CrossRef] [Google Scholar]
  3. S. Nizetić, P. Šolić, D. López-de-Ipiña González-de-Artaza, and L. Patrono, Internet of Things (loT): Opportunities, issues and challenges towards a smart and sustainable future, Journal of Cleaner Production 274, 122877 (2020). [CrossRef] [PubMed] [Google Scholar]
  4. D. C. Nath, I. Kundu, A. Sharma, P. Shivhare, A. Afzal, M. E. M. Soudagar, and S. G. Park, Internet of Things integrated with solar energy applications: a state-of-the-art review, Environ Dev Sustain (2023). [Google Scholar]
  5. S. Ansari, A. Ayob, M. S. H. Lipu, M. H. M. Saad, and A. Hussain, A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects, Sustainability 13, 8120 (2021). [Google Scholar]
  6. M. M. Rahman, J. Selvaraj, N. A. Rahim, and M. Hasanuzzaman, Global modern monitoring systems for PV based power generation: A review, Renewable and Sustainable Energy Reviews 82, 4142 (2018). [CrossRef] [Google Scholar]
  7. S. Kirmani, A. Mazid, I. A. Khan, and M. Abid, A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges, Sustainability 15, 717 (2022). [Google Scholar]
  8. C. K. Rao, S. K. Sahoo, and F. F. Yanine, A literature review on an IoT-based intelligent smart energy management systems for PV power generation, Hybrid Advances 5, 100136 (2024). [Google Scholar]
  9. L. O. Aghenta, M. Tariq Iqbal, and Department of Electrical and Computer Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland (MUN), St. John’s, NL A1B 3X5, Canada, Design and implementation of a low-cost, open source IoT-based SCADA system using ESP32 with OLED, ThingsBoard and MQTT protocol, AIMS Electronics and Electrical Engineering 4, 57 (2020). [Google Scholar]
  10. Y. Cheddadi, H. Cheddadi, F. Cheddadi, F. Errahimi, and N. Es-sbai, Design and implementation of an intelligent low-cost IoT solution for energy monitoring of photovoltaic stations, SN Appl. Sci. 2, 1165 (2020). [Google Scholar]
  11. P. De Arquer Fernández, M. Á. Fernández Fernández, J. L. Carús Candás, and P. Arboleya Arboleya, An IoT open source platform for photovoltaic plants supervision, International Journal of Electrical Power & Energy Systems 125, 106540 (2021). [Google Scholar]
  12. G. Boubakr, F. Gu, L. Farhan, and A. Ball, Enhancing Virtual Real-Time Monitoring of Photovoltaic Power Systems Based on the Internet of Things, Electronics 11, 2469 (2022). [Google Scholar]
  13. W. A. Jabbar, S. Annathurai, T. A. A. Rahim, and M. F. Mohd Fauzi, Smart energy meter based on a long-range wide-area network for a stand-alone photovoltaic system, Expert Systems with Applications 197, 116703 (2022). [Google Scholar]
  14. M. A. Sheba, D. A. Mansour, and N. H. Abbasy, A new low-cost and low-power industrial internet of things infrastructure for effective integration of distributed and isolated systems with smart grids, IET Generation Trans & Dist 17, 4554 (2023). [Google Scholar]
  15. M. Ul Mehmood, A. Ulasyar, W. Ali, K. Zeb, H. S. Zad, W. Uddin, and H.-J. Kim, A New Cloud-Based IoT Solution for Soiling Ratio Measurement of PV Systems Using Artificial Neural Network, Energies 16, 996 (2023). [Google Scholar]
  16. M. A. A. Radia, M. K. E. Nimr, and A. S. Atlam, IoT-based wireless data acquisition and control system for photovoltaic module performance analysis, E-Prime-Advances in Electrical Engineering, Electronics and Energy 6, 100348 (2023). [Google Scholar]
  17. A. Asnil, K. Krismadinata, I. Husnaini, H. Hazman, and E. Astrid, Real-Time Monitoring System Using IoT for Photovoltaic Parameters, TEM Journal 1316 (2023). [Google Scholar]
  18. R. Muñiz, R. Del Coso, F. Nuño, P. J. Villegas, D. Álvarez, and J. A. Martínez, Solar-Powered Smart Buildings: Integrated Energy Management Solution for IoT-Enabled Sustainability, Electronics 13, 317 (2024). [Google Scholar]
  19. Md. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, Internet of Things: Device Capabilities, Architectures, Protocols, and Smart Applications in Healthcare Domain, IEEE Internet Things J. 10, 3611 (2023). [Google Scholar]
  20. M. A. Caraveo-Cacep, R. Vázquez-Medina, and A. Hernández Zavala, A survey on low-cost development boards for applying cryptography in IoT systems, Internet of Things 22, 100743 (2023). [Google Scholar]
  21. Y. Saleem, N. Crespi, M. H. Rehmani, and R. Copeland, Internet of Things-Aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions, IEEE Access 7, 62962 (2019). [Google Scholar]
  22. R. Khan, S. U. Khan, R. Zaheer, and S. Khan, Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges, in 2012 10th International Conference on Frontiers of Information Technology (IEEE, Islamabad, Pakistan, 2012), pp. 257–260. [Google Scholar]
  23. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications, IEEE Commun. Surv. Tutorials 17, 2347 (2015). [Google Scholar]
  24. N. M. Kumar, A. Dash, and N. K. Singh, Internet of Things (IoT): An Opportunity for Energy-Food-Water Nexus, in 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC) (IEEE, Greater Noida, India, 2018), pp. 68–72. [CrossRef] [Google Scholar]
  25. G. Mokhtari, A. Anvari-Moghaddam, and Q. Zhang, A New Layered Architecture for Future Big Data-Driven Smart Homes, IEEE Access 7, 19002 (2019). [CrossRef] [Google Scholar]
  26. S. Adhya, D. Saha, A. Das, J. Jana, and H. Saha, An IoT Based Smart Solar Photovoltaic Remote Monitoring and Control Unit, in 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC) (IEEE, Kolkata, India, 2016), pp. 432–436. [CrossRef] [Google Scholar]
  27. S. M. A. A. Abir, A. Anwar, J. Choi, and A. S. M. Kayes, IoT-Enabled Smart Energy Grid: Applications and Challenges, IEEE Access 9, 50961 (2021). [Google Scholar]
  28. N. D. Chinnathambi, K. Nagappan, C. R. Samuel, and K. Tamilarasu, Internet of things-based smart residential building energy management system for a grid-connected solar photovoltaic-powered DC residential building, Intl J of Energy Research 46, 1497 (2022). [Google Scholar]
  29. T. Domínguez-Bolaño, O. Campos, V. Barral, C. J. Escudero, and J. A. García-Naya, An overview of IoT architectures, technologies, and existing open-source projects, Internet of Things 20, 100626 (2022). [Google Scholar]
  30. N. Rouibah, L. Barazane, A. Mellit, B. Hajji, and A. Rabhi, A Low-Cost Monitoring System for Maximum Power Point of a Photovoltaic System Using IoT Technique, in 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS) (IEEE, Fez, Morocco, 2019), pp. 1–5. [Google Scholar]
  31. R. I. S. Pereira, S. C. S. Jucá, and P. C. M. Carvalho, IoT embedded systems network and sensors signal conditioning applied to decentralized photovoltaic plants, Measurement 142, 195 (2019). [Google Scholar]
  32. F. J. Gimeno-Sales, S. Orts-Grau, A. Escribá-Aparisi, P. González-Altozano, I. Balbastre-Peralta, C. I. Martínez-Márquez, M. Gasque, and S. Seguí-Chilet, PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies, Sustainability 12, 10651 (2020). [Google Scholar]
  33. M. J. A. Baig, M. T. Iqbal, M. Jamil, and J. Khan, Design and implementation of an open-Source IoT and blockchain-based peer-to-peer energy trading platform using ESP32-S2, Node-Red and, MQTT protocol, Energy Reports 7, 5733 (2021). [Google Scholar]
  34. P. Muthukumar, S. Manikandan, R. Muniraj, T. Jarin, and A. Sebi, Energy efficient dual axis solar tracking system using IOT, Measurement: Sensors 28, 100825 (2023). [Google Scholar]
  35. J. F. Supo, P. Y. Puma, J. M. Ramos, and N. J. Beltrán, Implementation of a monitoring system for a photovoltaic installation based on IoT technology, J. Phys.: Conf. Ser. 2538, 012003 (2023). [Google Scholar]
  36. E. Al-Masri, K. R. Kalyanam, J. Batts, J. Kim, S. Singh, T. Vo, and C. Yan, Investigating Messaging Protocols for the Internet of Things (IoT), IEEE Access 8, 94880 (2020). [Google Scholar]
  37. M. Azrour, J. Mabrouki, A. Guezzaz, and A. Kanwal, Internet of Things Security: Challenges and Key Issues, Security and Communication Networks 2021, 1 (2021). [Google Scholar]
  38. Md. O. Qays, I. Ahmad, A. Abu-Siada, Md. L. Hossain, and F. Yasmin, Key communication technologies, applications, protocols and future guides for IoT-assisted smart grid systems: A review, Energy Reports 9, 2440 (2023). [Google Scholar]
  39. Espressif, Espressif, https://www.espressif.com/, (Accessed 07/20/2024). [Google Scholar]
  40. Thingsboard.io, Thingsboard IoT Platform, https://thingsboard.io/, (Accessed 07/21/2024). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.