Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00060
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202560100060
Published online 16 January 2025
  1. A. Lazaro, M. Lazaro, R. Villarino, and D. Girbau, ‘Smart Spread Spectrum Modulated Tags for Detection of Vulnerable Road Users with Automotive Radar’, Sensors, vol. 23, no. 5. 2023. DOI: 10.3390/s23052730. [CrossRef] [PubMed] [Google Scholar]
  2. K.-I. Na and B. Park, ‘Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot’, ETRI Journal, vol. 45, no. 5. pp. 836–846, 2023. DOI: 10.4218/etrij.2023-0116. [CrossRef] [Google Scholar]
  3. A. N. Tabata, A. Zimmer, L. dos Santos Coelho, and V. C. Mariani, ‘Analyzing CARLA ‘s performance for 2D object detection and monocular depth estimation based on deep learning approaches’, Expert Systems with Applications, vol. 227. 2023. DOI: 10.1016/j.eswa.2023.120200. [CrossRef] [Google Scholar]
  4. O. Rachidi, E.-D. Chafik, and B. Bououlid, ‘Design of a Real-Time-Integrated System Based on Stereovision and YOLOv5 to Detect Objects’, 2023, pp. 283–297. DOI: 10.4018/979-8-3693-0497-6.ch016. [Google Scholar]
  5. X. Song, G. Li, L. Yang, L. Zhu, C. Hou, and Z. Xiong, ‘Real and Pseudo Pedestrian Detection Method with CA-YOLOv5s Based on Stereo Image Fusion’, Entropy, vol. 24, no. 8. 2022. DOI: 10.3390/e24081091. [Google Scholar]
  6. Y. Xu and B. Zhang, ‘BFOP3D: binocular feature based occluded pedestrian 3D detection’, Proceedings of SPIE - The International Society for Optical Engineering, vol. 13163. 2024. DOI: 10.1117/12.3030753. [Google Scholar]
  7. T. Ophoff, K. V. Beeck, and T. Goedeme, ‘Improving Real-Time Pedestrian Detectors with RGB+Depth Fusion’, Proceedings of AVSS 2018-2018 15th IEEE International Conference on Advanced Video and Signal-Based Surveillance. 2018. DOI: 10.1109/AVSS.2018.8639110. [Google Scholar]
  8. J. Zhang, Z. Ma, and N. Nuermaimaiti, ‘A pedestrian detection model based on binocular information fusion’, 2019 28th Wireless and Optical Communications Conference, WOCC 2019 - Proceedings. 2019. DOI: 10.1109/WOCC.2019.8770601. [Google Scholar]
  9. A. Tupper and R. Green, ‘Pedestrian Proximity Detection using RGB-D Data’, International Conference Image and Vision Computing New Zealand, vol. 2019- December. 2019. DOI: 10.1109/IVCNZ48456.2019.8961013. [Google Scholar]
  10. V. Harisankar and R. Karthika, ‘Real time pedestrian detection using modified Yolo V2’, Proceedings of the 5th International Conference on Communication and Electronics Systems, ICCES 2020. pp. 855–859, 2020. DOI: 10.1109/ICCES48766.2020.09138103. [Google Scholar]
  11. E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ‘ORB: An efficient alternative to SIFT or SURF’, Proceedings of the IEEE International Conference on Computer Vision. pp. 2564–2571, 2011. DOI: 10.1109/ICCV.2011.6126544. [Google Scholar]
  12. G.-S. Hong and B.-G. Kim, ‘A local stereo matching algorithm based on weighted guided image filtering for improving the generation of depth range images’, Displays, vol. 49, pp. 80–87, 2017, doi: https://doi.org/10.1016/j.displa.2017.07.006. [CrossRef] [Google Scholar]
  13. R. A. Hamzah et al., ‘A study of edge preserving filters in image matching’, Bulletin of Electrical Engineering and Informatics, vol. 10, no. 1. pp. 111–117, 2021. DOI: 10.11591/eei.v10i1.1947. [CrossRef] [Google Scholar]
  14. R. A. Hamzah, M. N. Z. Azali, Z. M. Noh, M. Zahari, and A. I. Herman, ‘Development of depth map from stereo images using sum of absolute differences and edge filters’, Indonesian Journal of Electrical Engineering and Computer Science, vol. 25, no. 2. pp. 875–883, 2022. DOI: 10.11591/ijeecs.v25.i2.pp875-883. [CrossRef] [Google Scholar]
  15. K. P. Kshirsagar and R. A. Shinde, ‘Depth estimation using stereo medical imaging’, Robotics and Automation in Healthcare: Advanced Applications. 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197124434&partnerID=40&md5=ca08d849e85754aa228936291d14ace1 [Google Scholar]
  16. H. Shahverdi, P. F. Moshiri, M. Nabati, R. Asvadi, and S. A. Ghorashi, ‘A CSI-Based Human Activity Recognition Using Canny Edge Detector’, Human Activity and Behavior Analysis: Advances in Computer Vision and Sensors: Volume 2. 2024. DOI: 10.1201/9781032636054-5. [Google Scholar]
  17. K. Liu, K. Xiao, and H. Xiong, ‘An Image Edge Detection Algorithm Based on Improved Canny’, in Proceedings of the 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017), Atlantis Press, Apr. 2017, pp. 533–537. DOI: 10.2991/icmmct-17.2017.114. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.