Open Access
Issue |
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
|
|
---|---|---|
Article Number | 00069 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/e3sconf/202560100069 | |
Published online | 16 January 2025 |
- H. Elmoudnia, P. Faria, R. Jalal, M. Waqif, and L. Saâdi, “Effectiveness of alkaline and hydrothermal treatments on cellulosic fibers extracted from the Moroccan Pennisetum Alopecuroides plant: Chemical and morphological characterization,” Carbohydrate Polymer Technologies and Applications, vol. 5, p. 100276, 2023. DOI: 10.1016/j.carpta.2022.100276 [CrossRef] [Google Scholar]
- L. A. Elseify, M. Midani, L. A. Shihata, and H. El-Mously, “Review on cellulosic fibers extracted from date palms (Phoenix Dactylifera L.) and their applications,” Cellulose, vol. 26, pp. 2209–2232, 2019. [CrossRef] [Google Scholar]
- D. J. Mabberley, The plant-book: a portable dictionary of the vascular plants. Cambridge university press, 1997. DOI: 10.1007/s10570-019-02259-6 [Google Scholar]
- C. B. Asmussen, J. Dransfield, V. Deickmann, A. S. Barfod, J.-C. Pintaud, and W. J. Baker, “A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny,” Botanical Journal of the linnean Society, vol. 151, no. 1, pp. 15–38, 2006. DOI: 10.1111/j.1095-8339.2006.00521.x [CrossRef] [Google Scholar]
- A. Yamashita and K. Takasu, “Suitability of potential host plants in Japan for immature development of the coconut hispine beetle, Brontispa longissima (Gestro)(Coleoptera: Chrysomelidae),” Japan Agricultural Research Quarterly: JARQ, vol. 44, no. 2, pp. 143–149, 2010. DOI: 10.6090/jarq.44.143 [CrossRef] [Google Scholar]
- X. Chen, B. Vand, and S. Baldi, “Challenges and Strategies for Achieving High Energy Efficiency in Building Districts,” Buildings, vol. 14, no. 6, p. 1839, 2024. DOI: 10.3390/buildings14061839 [CrossRef] [Google Scholar]
- F. S. Hafez et al., “Energy efficiency in sustainable buildings: a systematic review with taxonomy, challenges, motivations, methodological aspects, recommendations, and pathways for future research,” Energy Strategy Reviews, vol. 45, p. 101013, 2023. DOI: 10.1016/j.esr.2022.101013 [CrossRef] [Google Scholar]
- A. López-Malest, M. R. Gabor, M. Panait, A. Brezoi, and C. Veres, “Green Innovation for Carbon Footprint Reduction in Construction Industry,” Buildings, vol. 14, no. 2, p. 374, 2024. DOI: 10.3390/buildings14020374 [CrossRef] [Google Scholar]
- A. N. Zoure and P. V. Genovese, “Comparative Study of the Impact of Bio-Sourced and Recycled Insulation Materials on Energy Efficiency in Office Buildings in Burkina Faso,” Sustainability, vol. 15, no. 2, 2023, DOI: 10.3390/su15021466. DOI: 10.3390/su15021466 [CrossRef] [Google Scholar]
- E. S. Ribeiro, R. A. Tavella, G. S. dos Santos, F. da Silva Figueira, and J. A. V. Costa, “Thermal and acoustic insulation boards from microalgae biomass, poly-ß-hydroxybutyrate and glass wool,” Research, Society and Development, vol. 9, no. 4, pp. e143942995–e143942995, 2020. DOI: 10.33448/rsd-v9i4.2995 [CrossRef] [Google Scholar]
- C. Siligardi, P. Miselli, E. Francia, and M. L. Gualtieri, “Temperature- induced microstructural changes of fiber-reinforced silica aerogel (FRAB) and rock wool thermal insulation materials: A comparative study,” Energy and Buildings, vol. 138, pp. 80–87, 2017. DOI: 10.1016/j.enbuild.2016.12.022 [CrossRef] [Google Scholar]
- O. Benjeddou, G. Ravindran, and M. A. Abdelzaher, “Thermal and acoustic features of lightweight concrete based on marble wastes and expanded perlite aggregate,” Buildings, vol. 13, no. 4, p. 992, 2023. DOI: 10.3390/buildings13040992 [CrossRef] [Google Scholar]
- N. H. Ramli Sulong, S. A. S. Mustapa, and M. K. Abdul Rashid, “Application of expanded polystyrene (EPS) in buildings and constructions: A review,” Journal of Applied Polymer Science, vol. 136, no. 20, p. 47529, 2019. doi: doi.org/10.1002/app.54965 [CrossRef] [Google Scholar]
- L. Izvolt, J. Kardoš, P. Dobeš, and D. Navikas, “Comprehensive Assessment of the Effectiveness of the Application of Foam and Extruded Polystyrene in the Railway Substructure,” Buildings, vol. 14, no. 1, p. 31, 2023. DOI: 10.3390/buildings14010031 [CrossRef] [Google Scholar]
- M. Ates, S. Karadag, A. A. Eker, and B. Eker, “Polyurethane foam materials and their industrial applications,” Polymer International, vol. 71, no. 10, pp. 1157–1163, 2022. DOI: 10.1002/pi.6441 [CrossRef] [Google Scholar]
- P. Raja et al., “A Review of Sustainable Bio-Based Insulation Materials for Energy-Efficient Buildings,” Macromolecular Materials and Engineering, vol. 308, no. 10, p. 2300086, 2023. DOI: 10.1002/mame.202300086 [CrossRef] [Google Scholar]
- L. Cosentino, J. Fernandes, and R. Mateus, “A review of natural biobased insulation materials,” Energies, vol. 16, no. 12, p. 4676, 2023. DOI: 10.3390/en16124676 [CrossRef] [Google Scholar]
- A. Hegyi, H. Vermesan, A.-V. Lăzărescu, C. Petcu, and C. Bulacu, “Thermal Insulation Mattresses Based on Textile Waste and Recycled Plastic Waste Fibres, Integrating Natural Fibres of Vegetable or Animal Origin,” Materials, vol. 15, no. 4, p. 1348, 2022. DOI: 10.3390/ma15041348 [CrossRef] [PubMed] [Google Scholar]
- S. Bourbia, H. Kazeoui, and R. Belarbi, “A review on recent research on bio-based building materials and their applications,” Materials for Renewable and Sustainable Energy, vol. 12, no. 2, pp. 117–139, 2023. DOI: 10.1007/s40243-023-00234-7 [CrossRef] [Google Scholar]
- M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, “Characterization and properties of natural fiber polymer composites: A comprehensive review,” Journal of Cleaner Production, vol. 172, pp. 566–581, 2018. DOI: 10.1016/j.jclepro.2017.10.101 [Google Scholar]
- M. Sanjay, S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan, “A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization,” Carbohydrate polymers, vol. 207, pp. 108–121, 2019. DOI: 10.1016/j.carbpol.2018.11.083 [CrossRef] [PubMed] [Google Scholar]
- H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A review on the tensile properties of natural fiber reinforced polymer composites,” Composites Part B: Engineering, vol. 42, no. 4, pp. 856–873, 2011. DOI: 10.1016/j.compositesb.2011.01.010 [CrossRef] [Google Scholar]
- S. Doddamani, S. M. Kulkarni, S. Joladarashi, M. K. Ts, and A. K. Gurjar, “Analysis of light weight natural fiber composites against ballistic impact: A review,” International Journal of Lightweight Materials and Manufacture, vol. 6, no. 3, pp. 450–468, 2023. DOI: 10.1016/j.ijlmm.2023.01.003 [CrossRef] [Google Scholar]
- O. Azmami, L. Sajid, S. Majid, Z. E. Ahmadi, A. Benayada, and S. Gmouh, “Development and application of nonwovens based on palm fiber as reinforcements of unsaturated polyester,” Journal of Composite Materials, vol. 57, no. 5, pp. 1035–1054, 2023. DOI: 10.1177/00219983221148824 [Google Scholar]
- H. Elmoudnia, P. Faria, R. Jalal, M. Waqif, and L. Saâdi, “A comprehensive chemical, physical, mechanical, and thermal characterization of novel cellulosic plant extracted from the petiole of Washingtonia robusta fibers,” Biomass Conversion and Biorefinery, pp. 1–17, 2024. DOI: 10.1007/s13399-024-06178-w [Google Scholar]
- D. Gaagaia, M. Bouakba, and A. Layachi, “Thermo-physico-chemical and statistical mechanical properties of Washingtonian filifera new lignocellulosic fiber,” Engineering Solid Mechanics, vol. 7, no. 2, pp. 137–150, 2019. DOI: 10.5267/j.esm.2019.3.002 [CrossRef] [Google Scholar]
- A. Lekrine et al., “Structural, thermal, mechanical and physical properties of Washingtonia filifera fibres reinforced thermoplastic biocomposites,” Materials Today Communications, vol. 31, Jun. 2022, DOI: 10.1016/j.mtcomm.2022.103574. [CrossRef] [Google Scholar]
- N. Benzannache, A. Belaadi, M. Boumaaza, and M. Bourchak, “Improving the mechanical performance of biocomposite plaster/Washingtonian filifira fibres using the RSM method,” Journal of Building Engineering, vol. 33, p. 101840, 2021. DOI: 10.1016/j.jobe.2020.101840 [CrossRef] [Google Scholar]
- N. Fatma, L. Allègue, M. Salem, R. Zitoune, and M. Zidi, “The effect of doum palm fibers on the mechanical and thermal properties of gypsum mortar,” Journal of Composite Materials, vol. 53, no. 19, pp. 2641–2659, 2019. DOI: 10.1177/0021998319838319 [Google Scholar]
- A. Atiqah, M. Jawaid, M. Ishak, and S. Sapuan, “Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermoplastic polyurethane,” Journal of natural fibers, vol. 15, no. 2, pp. 251–261, 2018. DOI: 10.1080/15440478.2017.1325427 [CrossRef] [Google Scholar]
- N. I. S. Anuar, S. Zakaria, S. Gan, C. H. Chia, C. Wang, and J. Harun, “Comparison of the morphological and mechanical properties of oil Palm EFB fibres and kenaf fibres in nonwoven reinforced composites,” Industrial Crops and Products, vol. 127, pp. 55–65, 2019. DOI: 10.1016/j.indcrop.2018.09.056 [CrossRef] [Google Scholar]
- A. Bezazi, S. Amroune, F. Scarpa, A. Dufresne, and A. Imad, “Investigation of the date palm fiber for green composites reinforcement: Quasi-static and fatigue characterization of the fiber,” Industrial Crops and Products, vol. 146, p. 112135, 2020. DOI: 10.1016/j.indcrop.2020.112135 [CrossRef] [Google Scholar]
- Z. Leman, E. S. Zainudin, and M. R. Ishak, “Effectiveness of alkali and sodium bicarbonate treatments on sugar palm fiber: Mechanical, thermal, and chemical investigations,” Journal of Natural Fibers, 2018. DOI: 10.1080/15440478.2018.1537872 [Google Scholar]
- T. Djoudi, M. Hecini, D. Scida, Y. Djebloun, and H. Djemai, “Physico- mechanical characterization of composite materials based on date palm tree fibers,” Journal of Natural Fibers, vol. 18, no. 6, pp. 789–802, 2021. DOI: 10.1080/15440478.2019.1658251 [CrossRef] [Google Scholar]
- G. Rajeshkumar, “Characterization of surface modified phoenix sp. fibers for composite reinforcement,” Journal of Natural Fibers, vol. 18, no. 12, pp. 2033–2044, 2021. DOI: 10.1080/15440478.2019.1711284 [CrossRef] [Google Scholar]
- N. Shanmugasundaram, I. Rajendran, and T. Ramkumar, “Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites,” Carbohydrate Polymers, vol. 195, pp. 566–575, 2018. DOI: 10.1016/j.carbpol.2018.04.127 [CrossRef] [PubMed] [Google Scholar]
- A. Alawar, A. M. Hamed, and K. Al-Kaabi, “Characterization of treated date palm tree fiber as composite reinforcement,” Composites Part B: Engineering, vol. 40, no. 7, pp. 601–606, 2009. DOI: 10.1016/j.compositesb.2009.04.018 [CrossRef] [Google Scholar]
- A. Bourmaud et al., “Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis,” Composites Part A: Applied Science and Manufacturing, vol. 103, pp. 292–303, 2017. DOI: 10.1016/j.compositesa.2017.10.017 [CrossRef] [Google Scholar]
- P. Madhu, M. Sanjay, S. Pradeep, K. S. Bhat, B. Yogesha, and S. Siengchin, “Characterization of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites,” Journal of Materials Research and Technology, vol. 8, no. 3, pp. 2597–2604, 2019. DOI: 10.1016/j.jmrt.2019.03.006 [CrossRef] [Google Scholar]
- F. Naiiri, A. Lamis, S. Mehdi, Z. Redouane, and Z. Mondher, “Performance of lightweight mortar reinforced with doum palm fiber,” Journal of Composite Materials, vol. 55, no. 12, pp. 1591–1607, 2021. DOI: 10.1177/0021998320975196 [Google Scholar]
- S. Chakravarthy, S. Madhu, J. S. N. Raju, and J. S. Md, “Characterization of novel natural cellulosic fiber extracted from the stem of cissus vitiginea plant,” International Journal of Biological Macromolecules, vol. 161, pp. 1358–1370, 2020. DOI: 10.1016/j.ijbiomac.2020.07.230 [CrossRef] [PubMed] [Google Scholar]
- X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review,” Journal of Polymers and the Environment, vol. 15, pp. 25–33, 2007. DOI: 10.1007/s10924-006-0042-3 [CrossRef] [Google Scholar]
- M. Jacob, S. Thomas, and K. Varughese, “Novel woven sisal fabric reinforced natural rubber composites: tensile and swelling characteristics,” Journal of composite materials, vol. 40, no. 16, pp. 1471–1485, 2006. DOI: 10.1177/0021998306059731 [Google Scholar]
- L. Sajid, O. Azmami, Z. Elahmadi, A. Benayada, and S. Gmouh, “Extraction and characterization of palm fibers and their use to produce wool-and polyester-blended nonwovens,” Journal of Industrial Textiles, vol. 51, no. 2, pp. 177–205, 2021. DOI: 10.1177/1528083719877007 [CrossRef] [Google Scholar]
- N. Azum, M. Jawaid, L. K. Kian, A. Khan, and M. M. Alotaibi, “Extraction of microcrystalline cellulose from Washingtonia fibre and its characterization,” Polymers, vol. 13, no. 18, p. 3030, 2021. DOI: 10.3390/polym13183030 [CrossRef] [PubMed] [Google Scholar]
- M. Jawaid, L. K. Kian, H. Fouad, N. Saba, O. Y. Alothman, and M. Hashem, “New cellulosic fibers from washingtonia tree agro-wastes: Structural, morphological, and thermal properties,” Journal of Natural Fibers, vol. 19, no. 13, pp. 5333–5343, 2022. DOI: 10.1080/15440478.2021.1875374 [CrossRef] [Google Scholar]
- P. Sabarinathan, K. Rajkumar, V. Annamalai, and K. Vishal, “Characterization on chemical and mechanical properties of silane treated fish tail palm fibres,” International Journal of Biological Macromolecules, vol. 163, pp. 2457–2464, 2020. DOI: 10.1016/j.ijbiomac.2020.09.159 [CrossRef] [PubMed] [Google Scholar]
- G. Kain, V. Güttler, M.-C. Barbu, A. Petutschnigg, K. Richter, and G. Tondi, “Density related properties of bark insulation boards bonded with tannin hexamine resin,” European Journal of Wood and Wood Products, vol. 72, pp. 417–424, 2014. DOI: 10.1007/s00107-014-0798-4 [CrossRef] [Google Scholar]
- E. Iffa, F. Tariku, and W. Y. Simpson, “Highly insulated wall systems with exterior insulation of polyisocyanurate under different facer materials: Material characterization and long-term hygrothermal performance assessment,” Materials, vol. 13, no. 15, p. 3373, 2020. DOI: 10.3390/ma13153373 [CrossRef] [PubMed] [Google Scholar]
- Y. Li, Y. Sun, Y. Zhuang, L. Duan, and K. Xie, “Thermal Conductivity Characteristics of Thermal Insulation Materials Immersed in Water for Cold-Region Tunnels,” Advances in Materials Science and Engineering, vol. 2020, no. 1, p. 9345615, 2020. DOI: 10.1155/2020/9345615 [CrossRef] [Google Scholar]
- C. Petcu et al., “Research on Thermal Insulation Performance and Impact on Indoor Air Quality of Cellulose-Based Thermal Insulation Materials,” Materials, vol. 16, no. 15, p. 5458, 2023. DOI: 10.3390/ma16155458 [CrossRef] [PubMed] [Google Scholar]
- B. A.-L. Östman and E. Mikkola, “European classes for the reaction to fire performance of wood products.,” 2006. [Google Scholar]
- B. A. Östman, “Fire performance of wood products and timber structures,” International Wood Products Journal, vol. 8, no. 2, pp. 74–79, 2017. DOI: 10.1080/20426445.2017.1320851 [CrossRef] [Google Scholar]
- C. Lafond and P. Blanchet, “Technical performance overview of biobased insulation materials compared to expanded polystyrene,” Buildings, vol. 10, no. 5, p. 81, 2020. DOI: 10.3390/buildings10050081 [CrossRef] [Google Scholar]
- M. Viel, “Développement de composites bio-sourcés destinés à l’isolation des bâtiments,” 2018. [Google Scholar]
- R. Bouchie, B. Busson, B. Cormier, A. Delaire, S. Farkh, and F. Leguillon, “Performance énergétique: les matériaux et procédés d isolation-Choix et mise en oeuvre des matériaux et des procédés, Performances et références réglementaires, plus de 35 solutions analysées,” Paris, CSTB éditions, 2013. [Google Scholar]
- C. C. Ferrandez-Garcia, C. E. Ferrandez-Garcia, M. Ferrandez-Villena, M. T. Ferrández-García, and T. Garcia-Ortuno, “Acoustic and thermal evaluation of palm panels as building material,” BioResources, vol. 12, no. 4, pp. 8047–8057, 2017. DOI: 10.15376/biores.12.4.8047-8057 [CrossRef] [Google Scholar]
- C.-E. Ferrández-García, A. Ferrández-García, M. Ferrández-Villena, J. F. Hidalgo-Cordero, T. García-Ortuño, and M.-T. Ferrández-García, “Physical and mechanical properties of particleboard made from palm tree prunings,” Forests, vol. 9, no. 12, p. 755, 2018. DOI: 10.3390/f9120755 [CrossRef] [Google Scholar]
- B. En, “13986. Wood-based Panels for Use in Construction Characteristics, Evaluation of Conformity and Marking,” British Standards Institution, London, 2015. DOI: 10.3403/02633265u [Google Scholar]
- M. T. Ferrandez-Garcia, A. Ferrandez-Garcia, T. Garcia-Ortuño, C. E. Ferrandez-Garcia, and M. Ferrandez-Villena, “Influence of particle size on the properties of boards made from Washingtonia palm rachis with citric acid,” Sustainability, vol. 12, no. 12, p. 4841, 2020. DOI: 10.3390/su12124841 [CrossRef] [Google Scholar]
- T. Garcia-Ortuño et al., “Evaluation of the Different Uses of Washingtonia robusta Pruning Waste,” Communications in Soil Science and Plant Analysis, vol. 44, no. 1-4, pp. 623–631, 2013, DOI: 10.1080/00103624.2013.745371. [CrossRef] [Google Scholar]
- M. Boumaaza et al., “Optimization of flexural properties and thermal conductivity of Washingtonia plant biomass waste biochar reinforced bio-mortar,” Journal of Materials Research and Technology, vol. 23, pp. 3515–3536, 2023. DOI: 10.1016/j.jmrt.2023.02.009 [CrossRef] [Google Scholar]
- S. Siham, L. Boukhattem, and M. Boumhaout, “Experimental study on chemical and thermomechanical properties of concrete incorporating Washingtonia robusta fibres,” Advances in Cement Research, pp. 1–14, 2024. DOI: 10.1680/jadcr.23.00036 [Google Scholar]
- A. Lekrine et al., “Thermomechanical and structural analysis of green hybrid composites based on polylactic acid/biochar/treated W. filifera palm fibers,” Journal of Materials Research and Technology, 2024. DOI: 10.1016/j.jmrt.2024.06.033 [Google Scholar]
- M. Gopi Krishna, C. Kailasanathan, and B. NagarajaGanesh, “Physicochemical and Morphological Characterization of Cellulose Fibers Extracted from Sansevieria roxburghiana Schult. & Schult. F Leaves,” Journal of Natural Fibers, vol. 19, no. 9, pp. 3300–3316, 2022, DOI: 10.1080/15440478.2020.1843102. [CrossRef] [Google Scholar]
- S. Bahlouli, A. Belaadi, A. Makhlouf, H. Alshahrani, M. K. Khan, and M. Jawaid, “Effect of fiber loading on thermal properties of cellulosic washingtonia reinforced HDPE biocomposites,” Polymers, vol. 15, no. 13, p. 2910, 2023. DOI: 10.3390/polym15132910 [CrossRef] [PubMed] [Google Scholar]
- M. B. Alshammari, A. Ahmad, M. Jawaid, and S. A. Awad, “Thermal and dynamic performance of kenaf/washingtonia fibre-based hybrid composites,” Journal of Materials Research and Technology, vol. 25, pp. 1642–1648, 2023. DOI: 10.1016/j.jmrt.2023.06.035 [CrossRef] [Google Scholar]
- M. Chandrasekar, K. Senthilkumar, M. Jawaid, S. Alamery, H. Fouad, and M. Midani, “Tensile, thermal and physical properties of Washightonia trunk fibres/pineapple fibre biophenolic hybrid composites,” Journal of Polymers and the Environment, vol. 30, no. 10, pp. 4427–4434, 2022. DOI: 10.1007/s10924-022-02524-z [CrossRef] [Google Scholar]
- M. N. Amin, W. Ahmad, K. Khan, and A. Ahmad, “A comprehensive review of types, properties, treatment methods and application of plant fibers in construction and building materials,” Materials, vol. 15, no. 12, p. 4362, 2022. DOI: 10.3390/ma15124362 [CrossRef] [PubMed] [Google Scholar]
- G. Madaras, “Acoustic ceiling systems inside buildings: What we were taught and should now know instead,” The Journal of the Acoustical Society of America, vol. 153, no. 3_supplement, pp. A306–A306, 2023. DOI: 10.1121/10.0018948 [CrossRef] [Google Scholar]
- I. Dembri, A. Belaadi, M. Boumaaza, and M. Bourchak, “Tensile behavior and statistical analysis of Washingtonia filifera fibers as potential reinforcement for industrial polymer biocomposites,” Journal of Natural Fibers, vol. 19, no. 16, pp. 14839–14854, 2022. DOI: 10.1080/15440478.2022.2069189 [CrossRef] [Google Scholar]
- V. Gumanová, L. Sobotová, T. Dzuro, M. Badida, and M. Moravec, “Experimental survey of the sound absorption performance of natural fibres in comparison with conventional insulating materials,” Sustainability, vol. 14, no. 7, p. 4258, 2022. DOI: 10.3390/su14074258 [CrossRef] [Google Scholar]
- T. Hassan et al., “Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste,” Polymers, vol. 12, no. 3, p. 654, 2020. DOI: 10.3390/polym12030654 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.