Open Access
Issue |
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
|
|
---|---|---|
Article Number | 00072 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/e3sconf/202560100072 | |
Published online | 16 January 2025 |
- I. Chakir, M. El Khaili, M. Mestari, “Logistics Flow Optimization for Advanced Crisis Management,” Procedía Computer Science, Volume 175, 2020, pp. 419–426, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.07.059. [CrossRef] [Google Scholar]
- L. Terrada, M. El Khaili, and H. Ouajji, “Implementation of a Multi-Agent System for Decision-Making in Supply Chain Management,” Procedia Computer Science, Volume 177, pp. 624–630, 2020, DOI: 10.1016/j.procs.2020.10.089. [CrossRef] [Google Scholar]
- Chauhan, Sahil, A. M. Agarwal, and S. K. Jain. “Integrating circular economy practices in green supply chain management: A systematic literature review.” Resources, Conservation and Recycling, vol. 167, 2021. [Google Scholar]
- Lu, Yijun, S. K. Verma, and J. L. Enos. “IoT and blockchain technology for sustainable supply chain: A literature review.” Sustainable Production and Consumption, vol. 28, 2021. [Google Scholar]
- Behzadi, Golnaz, A. O. Ignatius, and S. R. B. Oliveira. “Green logistics practices in circular economy: A systematic literature review.” Journal of Cleaner Production, vol. 298, 2022. [Google Scholar]
- Zhang, Lei, J. Xu, and Q. Chen. “Enhancing cross-docking efficiency in green supply chain: A systematic literature review.” International Journal of Production Economics, vol. 245, 2020. [Google Scholar]
- Patel, Ravi, H. Shah, and S. Sharma. “IoT and AI applications in sustainable supply chain management: A review.” Computers & Industrial Engineering, vol. 150, 2021. [Google Scholar]
- H. Lin, J. Lin, F. Wang, An innovative machine learning model for supply chain management, J. Innov. Knowl. 7 (4) (2022) 100276, https://doi.org/10.1016/j.jik.2022.100276. [CrossRef] [Google Scholar]
- Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372. DOI: 10.1136/bmj.n71. [Google Scholar]
- M.A. Amani, S.A. Sarkodie, Mitigating spread of contamination in meat supply chain management using deep learning, Sci. Rep. 12 (1) (2022) 5037, https://doi.org/10.1038/s41598-022-08993-5. [CrossRef] [Google Scholar]
- J. Liu, M. Chen, H. Liu, The role of big data analytics in enabling green supply chain management: a literature review, J. Digit. Inf. Manag. 2 (2) (2020) 75–83, https://doi.org/10.1007/s42488-019-00020-z. [Google Scholar]
- C. Yun, M. Shun, K. Jackson, et al., Integrating life cycle assessment and green supply chain management for sustainable business practices, Int. J. Eng. Appl. Sci. 12 (1) (2023) 198–202. Available at: SSRN: https://ssrn.com/abstract=4464723. [Google Scholar]
- L. Li, S. Shan, J. Dai, et al., The impact of green supply chain management on green innovation: a meta-analysis from the inter-organizational learning perspective, Int. J. Prod. Econ. 250 (2022) 108622, https://doi.org/10.1016/j.ijpe.2022.108622. [CrossRef] [Google Scholar]
- S.A. Raza, S.M. Govindaluri, M.K. Bhutta, Research themes in machine learning applications in supply chain management using bibliometric analysis tools, Benchmark Int. J. 30 (3) (2023) 834–867, https://doi.org/10.1108/BIJ-12-2021-0755. [CrossRef] [Google Scholar]
- Z. Wang, X. Guan, Y. Zeng, et al., Utilizing data platform management to implement “5w” analysis framework for preventing and controlling corruption in grassroots government, Heliyon (2024) e28601, https://doi.org/10.1016/j.heliyon.2024.e28601. [CrossRef] [PubMed] [Google Scholar]
- R. Sharma, A. Shishodia, A. Gunasekaran, et al., The role of artificial intelligence in supply chain management: mapping the territory, Int. J. Prod. Res. 60 (24) (2022) 7527–7550, https://doi.org/10.1080/00207543.2022.2029611. [CrossRef] [Google Scholar]
- B. Esmaeilian, J. Sarkis, K. Lewis, et al., Blockchain for the future of sustainable supply chain management in industry 4.0, Resour. Conserv. Recycl. 163 (2020) 105064, https://doi.org/10.1016/j.resconrec.2020.105064. [CrossRef] [Google Scholar]
- V. Varriale, A. Cammarano, F. Michelino, et al., The unknown potential of blockchain for sustainable supply chains, Sustainability 12 (2020), https://doi.org/10.3390/su12229400. [CrossRef] [Google Scholar]
- D. Wang, G. Ge, Development of a sustainable collaborative management strategy for green supply chains in e-business: collaborative management strategy of green supply chain considering sustainable development, Inf. Resour. Manag. J. 35 (3) (2022) 1–21, https://doi.org/10.4018/IRMJ.304453. [CrossRef] [Google Scholar]
- T.D. Mastos, A. Nizamis, T. Vafeiadis, et al., Industry 4.0 sustainable supply chains: an application of an iot enabled scrap metal management solution, J. Clean. Prod. 269 (2020) 122377, https://doi.org/10.1016/j.jclepro.2020.122377. [CrossRef] [Google Scholar]
- E. Ramli, D. Zainudin, R. Islam, Explore the research trends of green supply chain in the manufacturing industry: a bibliometric analysis, Oper. Supply Chain Manag.: Int. J. 15 (3) (2022) 345–358, https://doi.org/10.31387/oscm0500351. [CrossRef] [Google Scholar]
- O. Dumitrascu, M. Dumitrascu, D. Dobrotă, Performance evaluation for a sustainable supply chain management system in the automotive industry using artificial intelligence, Processes 8 (2020), https://doi.org/10.3390/pr8111384. [CrossRef] [Google Scholar]
- C. Wu, C. Lin, D. Barnes, et al., Partner selection in sustainable supply chains: a fuzzy ensemble learning model, J. Clean. Prod. 275 (2020) 123165, https://doi.org/10.1016/jjclepro.2020.123165. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.