Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00077
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202560100077
Published online 16 January 2025
  1. Kusimo, K.O., Okafor, F.O.: COMPARATIVE ANALYSIS OF MECHANICAL and MANUAL MODES OF TRAFFIC SURVEY FOR TRAFFIC LOAD DETERMINATION. Nigerian Journal of Technology. 35, 226–233 (2016). https://doi.org/10.4314/NJT.V35I2.1 [CrossRef] [Google Scholar]
  2. Liao, C.-F.: Investigating inductive loop signature technology for statewide vehicle classification counts. (2018) [Google Scholar]
  3. Charef, A., Jarir, Z., Quafafou, M.: Optimizing Traffic Flow and Pedestrian Safety: The Role of Crosswalk Distance in Roundabout Design. 2024 International Conference on Global Aeronautical Engineering and Satellite Technology (GAST). 1–6 (2024). https://doi.org/10.1109/GAST60528.2024.10520741 [Google Scholar]
  4. Charef, A., Jarir, Z., Quafafou, M.: Assessing the driving behaviour of motorcyclists to improve road safety. JUCS - Journal of Universal Computer Science 30(5): 617–644. 30, 617-644 (2024). https://doi.org/10.3897/JUCS.108550 [CrossRef] [Google Scholar]
  5. Ali, A., Ayub, N., Shiraz, M., Ullah, N., Gani, A., Qureshi, M.A.: Traffic Efficiency Models for Urban Traffic Management Using Mobile Crowd Sensing: A Survey. Sustainability 2021, Vol. 13, Page 13068. 13, 13068 (2021). https://doi.org/10.3390/SU132313068 [CrossRef] [Google Scholar]
  6. Abbruzzo, A., Ferrante, M., De Cantis, S.: A pre-processing and network analysis of GPS tracking data. https://doi.org/10.1080/17421772.2020.1769170. 16, 217–240 (2020). https://doi.org/10.1080/17421772.2020.1769170 [Google Scholar]
  7. Feng, T., Timmermans, H.J.P.: Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data. http://dx.doi.org/10.1080/03081060.2015.1127540. 39, 180–194 (2016). https://doi.org/10.1080/03081060.2015.1127540 [Google Scholar]
  8. Méneroux, Y., Le Guilcher, A., Saint Pierre, G., Ghasemi Hamed, M., Mustière, S., Orfila, O.: Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning. Int J Data Sci Anal. 10, 101–119 (2020). https://doi.org/10.1007/S41060-019-00197-X/METRICS [CrossRef] [Google Scholar]
  9. Charef, A., Jarir, Z., Quafafou, M.: Impact of Motorcycle Placement on Travel Time and Traffic Dynamics at Urban Intersections. 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2024. (2024). https://doi.org/10.1109/IRASET60544.2024.10549511 [Google Scholar]
  10. Pogodzinska, S., Kiec, M., D’Agostino, C.: Bicycle Traffic Volume Estimation Based on GPS Data. Transportation Research Procedía. 45, 874–881 (2020). https://doi.org/10.1016/J.TRPRO.2020.02.081 [CrossRef] [Google Scholar]
  11. Tafidis, P., Teixeira, J., Bahmankhah, B., Macedo, E., Coelho, M.C., Bandeira, J.: Exploring crowdsourcing information to predict traffic-related impacts. Conference Proceedings - 2017 17th IEEE International Conference on Environment and Electrical Engineering and 2017 1st IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2017. (2017). https://doi.org/10.1109/EEEIC.2017.7977595 [Google Scholar]
  12. Semwal, D., Patil, S., Galhotra, S., Arora, A., Unny, N.: STAR: Real-time spatiotemporal analysis and prediction of traffic insights using social media. ACM International Conference Proceeding Series. 20-March-2015, (2015). https://doi.org/10.1145/2778865.2778872 [Google Scholar]
  13. Tayeb, F., Chihaoui, H., Filali, F.: Bluetooth-Based Vehicle Counting: Bridging the Gap to Ground-Truth With Machine Learning. (2023). https://doi.org/10.1109/ACCESS.2023.3287981 [Google Scholar]
  14. Peppa, M. V., Bell, D., Komar, T., Xiao, W.: URBAN TRAFFIC FLOW ANALYSIS BASED ON DEEP LEARNING CAR DETECTION FROM CCTV IMAGE SERIES. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-4, 499–506 (2018). https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-4-499-2018 [CrossRef] [Google Scholar]
  15. Charef, A., Jarir, Z., Quafafou, M.: Real-Time Multi-class Helmet Violation Detection Using YOLOv8 with License Plate Recognition. 263–273 (2024). https://doi.org/10.1007/978-3-031-68675-7_26 [Google Scholar]
  16. A. Charef, Z. Jarir, and M. Quafafou, “Enhancing Road Safety: Automated Traffic Violation Detection and Counting System Using YOLO Algorithm,” 2024 Mediterranean Smart Cities Conference (MSCC), pp. 1–6, May 2024, DOI: 10.1109/MSCC62288.2024.10697076. [Google Scholar]
  17. Charef, A., Jarir, Z., Quafafou, M.: The Impact of Motorcycle Positioning on Start-Up Lost Time: The Empirical Case Study of Signalized Intersections in Marrakech using VISSIM. Engineering, Technology & Applied Science Research. 14, 14313–14318 (2024). https://doi.org/10.48084/ETASR.7141 [CrossRef] [Google Scholar]
  18. Terven, J., Córdova-Esparza, D.-M., Romero-González, J.-A.: A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Machine Learning and Knowledge Extraction 2023, Vol. 5, Pages 1680-1716. 5, 1680–1716 (2023). https://doi.org/10.3390/MAKE5040083 [CrossRef] [Google Scholar]
  19. Welch, G.F.: Kalman Filter. Computer Vision. 1–3 (2021). https://doi.org/10.1007/978-3-030-03243-2_716-1 [Google Scholar]
  20. Yang, F., Zhang, X., Liu, B.: Video object tracking based on YOLOv7 and DeepSORT. (2022) [Google Scholar]
  21. G.J. McLachlan: Mahalanobis Distance, https://www.ias.ac.in/article/fulltext/reso/004/06/0020-0026 [Google Scholar]
  22. Charef, A., Jarir, Z., Quafafou, M.: Enhancing Road Safety: Automated Traffic Violation Detection and Counting System Using YOLO Algorithm. 2024 Mediterranean Smart Cities Conference (MSCC). 1–6 (2024). https://doi.org/10.1109/MSCC62288.2024.10697076 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.