Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00083
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202560100083
Published online 16 January 2025
  1. Y. Luo, Y. Wu, B. Li, T. Mo, Y. Li, S.-P. Feng, J. Qu, and P. K. Chu, “Development and application of fuel cells in the automobile industry,” Journal of Energy Storage, vol. 42, p. 103124, 2021. [CrossRef] [Google Scholar]
  2. W. J. Requia, M. Mohamed, C. D. Higgins, A. Arain, and M. Ferguson, “How clean are electric vehicles? evidencebased review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health,” Atmospheric Environment, vol. 185, pp. 64–77, 2018. [CrossRef] [Google Scholar]
  3. Z. Wu, M. Wang, J. Zheng, X. Sun, M. Zhao, and X. Wang, “Life cycle greenhouse gas emission reduction potential of battery electric vehicle,” Journal of Cleaner Production, vol. 190, pp. 462–470, 2018. [CrossRef] [Google Scholar]
  4. V. K. Kukkala, J. Tunnell, S. Pasricha, and T. Bradley, “Advanced driver-assistance systems: A path toward autonomous vehicles,” IEEE Consumer Electronics Magazine, vol. 7, no. 5, pp. 18–25, 2018. [CrossRef] [Google Scholar]
  5. S. A. Sajadi-Alamdari, H. Voos, and M. Darouach, “Ecological advanced driver assistance system for optimal energy management in electric vehicles,” IEEE Intelligent Transportation Systems Magazine, vol. 12, no. 4, pp. 92–109, 2018. [Google Scholar]
  6. D. Phan, A. Bab-Hadiashar, C. Y. Lai, B. Crawford, R. Hoseinnezhad, R. N. Jazar, and H. Khayyam, “Intelligent energy management system for conventional autonomous vehicles,” Energy, vol. 191, p. 116476, 2020. [CrossRef] [Google Scholar]
  7. Y. He, B. Ciuffo, Q. Zhou, M. Makridis, K. Mattas, J. Li, Z. Li, F. Yan, and H. Xu, “Adaptive cruise control strategies implemented on experimental vehicles: A review,” IFAC-PapersOnLine, vol. 52, no. 5, pp. 21–27, 2019. [CrossRef] [Google Scholar]
  8. S. Wei, P. E. Pfeffer, and J. Edelmann, “State of the art: Ongoing research in assessment methods for lane keeping assistance systems,” IEEE Transactions on Intelligent Vehicles, 2023. [Google Scholar]
  9. M. Ariyanto, G. D. Haryadi, M. Munadi, R. Ismail, and Z. Hendra, “Development of low-cost autonomous emergency braking system (aebs) for an electric car,” in 2018 5th International Conference on Electric Vehicular Technology (ICEVT), pp. 167–171, IEEE, 2018. [CrossRef] [Google Scholar]
  10. K. P. Divakarla, A. Emadi, and S. Razavi, “A cognitive advanced driver assistance systems architecture for autonomous-capable electrified vehicles,” IEEE Transactions on Transportation Electrification, vol. 5, no. 1, pp. 48–58, 2018. [Google Scholar]
  11. I.-S. Sorlei, N. Bizon, P. Thounthong, M. Varlam, E. Carcadea, M. Culcer, M. Iliescu, and M. Raceanu, “Fuel cell electric vehicles—a brief review of current topologies and energy management strategies,” Energies, vol. 14, no. 1, p. 252, 2021. [CrossRef] [Google Scholar]
  12. M. Muthukumar, N. Rengarajan, B. Velliyangiri, M. Omprakas, C. Rohit, and U. K. Raja, “The development of fuel cell electric vehicles-a review,” Materials Today: Proceedings, vol. 45, pp. 1181–1187, 2021. [CrossRef] [Google Scholar]
  13. W. Zhou, Y. Zheng, Z. Pan, and Q. Lu, “Review on the battery model and soc estimation method,” Processes, vol. 9, no. 9, p. 1685, 2021. [CrossRef] [Google Scholar]
  14. J. Zhao and A. F. Burke, “Review on supercapacitors: Technologies and performance evaluation,” Journal of energy chemistry, vol. 59, pp. 276–291, 2021. [Google Scholar]
  15. Y. Huang, N. C. Surawski, B. Organ, J. L. Zhou, O. H. Tang, and E. F. Chan, “Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles,” Science of the Total Environment, vol. 659, pp. 275–282, 2019. [CrossRef] [Google Scholar]
  16. G. T. Kalghatgi, “The outlook for fuels for internal combustion engines,” International Journal of Engine Research, vol. 15, no. 4, pp. 383–398, 2014. [CrossRef] [Google Scholar]
  17. T.-D. Do, M.-T. Duong, Q.-V. Dang, and M.-H. Le, “Real-time self-driving car navigation using deep neural network,” in 2018 4th International Conference on Green Technology and Sustainable Development (GTSD), pp. 7–12, IEEE, 2018. [CrossRef] [Google Scholar]
  18. E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driving: Common practices and emerging technologies,” IEEE access, vol. 8, pp. 58443–58469, 2020. [CrossRef] [Google Scholar]
  19. T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, “Lithium-ion batteries: outlook on present, future, and hybridized technologies,” Journal of materials chemistry A, vol. 7, no. 7, pp. 2942–2964, 2019. [CrossRef] [Google Scholar]
  20. J. Wen, D. Zhao, and C. Zhang, “An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency,” Renewable Energy, vol. 162, pp. 1629–1648, 2020. [CrossRef] [Google Scholar]
  21. Q. Kellner, E. Hosseinzadeh, G. Chouchelamane, W. D. Widanage, and J. Marco, “Battery cycle life test development for high-performance electric vehicle applications,” Journal of Energy Storage, vol. 15, pp. 228–244, 2018. [CrossRef] [Google Scholar]
  22. M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker, “State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations,” Ieee Access, vol. 6, pp. 19362–19378, 2018. [CrossRef] [Google Scholar]
  23. L. Fan, Z. Tu, and S. H. Chan, “Recent development of hydrogen and fuel cell technologies: A review,” Energy Reports, vol. 7, pp. 8421–8446, 2021. [CrossRef] [Google Scholar]
  24. D. Wu, J. Ren, H. Davies, J. Shang, and O. Haas, “Intelligent hydrogen fuel cell range extender for battery electric vehicles,” World Electric Vehicle Journal, vol. 10, no. 2, p. 29, 2019. [CrossRef] [Google Scholar]
  25. Y. Liu, J. Li, Z. Chen, D. Qin, and Y. Zhang, “Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles,” Journal of Power Sources, vol. 429, pp. 55–66, 2019. [CrossRef] [Google Scholar]
  26. T. Zhang, P. Wang, H. Chen, and P. Pei, “A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition,” Applied energy, vol. 223, pp. 249–262, 2018. [CrossRef] [Google Scholar]
  27. D. Lemian and F. Bode, “Battery-supercapacitor energy storage systems for electrical vehicles: a review,” Energies, vol. 15, no. 15, p. 5683, 2022. [CrossRef] [Google Scholar]
  28. N. VukajloviC, D. MiliCeviC, B. DumniC, and B. PopadiC, “Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage,” Journal of Energy Storage, vol. 31, p. 101603, 2020. [CrossRef] [Google Scholar]
  29. F. Reway, W. Huber, and E. P. Ribeiro, “Test methodology for vision-based adas algorithms with an automotive camera-in-the-loop,” in 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), pp. 1–7, IEEE, 2018. [Google Scholar]
  30. F. Engels, P. Heidenreich, M. Wintermantel, L. Stacker, M. Al Kadi, and A. M. Zoubir, “Automotive radar signal processing: Research directions and practical challenges,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 4, pp. 865–878, 2021. [CrossRef] [Google Scholar]
  31. R. Changalvala and H. Malik, “Lidar data integrity verification for autonomous vehicle,” IEEE Access, vol. 7, pp. 138018–138031, 2019. [CrossRef] [Google Scholar]
  32. G. Li, S. E. Li, R. Zou, Y. Liao, and B. Cheng, “Detection of road traffic participants using cost-effective arrayed ultrasonic sensors in low-speed traffic situations,” Mechanical Systems and Signal Processing, vol. 132, pp. 535–545, 2019. [CrossRef] [Google Scholar]
  33. N. Capodieci, R. Cavicchioli, F. Muzzini, and L. Montagna, “Improving emergency response in the era of adas vehicles in the smart city,” ICT Express, vol. 7, no. 4, pp. 481–486, 2021. [CrossRef] [Google Scholar]
  34. Z. Zhong, S. Liu, M. Mathew, and A. Dubey, “Camera radar fusion for increased reliability in adas applications,” Electronic Imaging, vol. 30, pp. 1–4, 2018. [Google Scholar]
  35. Z. Wang, Y. Wu, and Q. Niu, “Multi-sensor fusion in automated driving: A survey,” Ieee Access, vol. 8, pp. 2847–2868, 2019. [Google Scholar]
  36. S. Hussain, M. U. Ali, G.-S. Park, S. H. Nengroo, M. A. Khan, and H.-J. Kim, “A real-time bi-adaptive controllerbased energy management system for battery-supercapacitor hybrid electric vehicles,” Energies, vol. 12, no. 24, p. 4662, 2019. [CrossRef] [Google Scholar]
  37. Q. Song, L. Wang, and J. Chen, “A decentralized energy management strategy for a fuel cell-battery hybrid electric vehicle based on composite control,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 5486–5496, 2020. [Google Scholar]
  38. M. A. Majeed, M. G. Khan, and F. Asghar, “Nonlinear control of hybrid energy storage system for hybrid electric vehicles,” International Transactions on Electrical Energy Systems, vol. 30, no. 4, p. e12268, 2020. [CrossRef] [Google Scholar]
  39. M. S. Khan, I. Ahmad, H. Armaghan, and N. Ali, “Backstepping sliding mode control of fc-uc based hybrid electric vehicle,” IEEE Access, vol. 6, pp. 77202–77211, 2018. [CrossRef] [Google Scholar]
  40. M. Sellali, A. Betka, S. Drid, A. Djerdir, L. Allaoui, and M. Tiar, “Novel control implementation for electric vehicles based on fuzzy-back stepping approach,” Energy, vol. 178, pp. 644–655, 2019. [CrossRef] [Google Scholar]
  41. T. Zeng, C. Zhang, Y. Zhang, C. Deng, D. Hao, Z. Zhu, H. Ran, and D. Cao, “Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle,” Energy, vol. 227, p. 120305, 2021. [CrossRef] [Google Scholar]
  42. H. Li, A. Ravey, A. N’Diaye, and A. Djerdir, “Online adaptive equivalent consumption minimization strategy for fuel cell hybrid electric vehicle considering power sources degradation,” Energy conversion and management, vol. 192, pp. 133–149, 2019. [CrossRef] [Google Scholar]
  43. X. Lu, Y. Wu, J. Lian, Y. Zhang, C. Chen, P. Wang, and L. Meng, “Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm,” Energy Conversion and Management, vol. 205, p. 112474, 2020. [CrossRef] [Google Scholar]
  44. R. Quan, H. Guo, X. Li, J. Zhang, and Y. Chang, “A real-time energy management strategy for fuel cell vehicle based on pontryagin’s minimum principle,” Iscience, vol. 27, no. 4, 2024. [Google Scholar]
  45. A. M. Ali, A. Ghanbar, and D. Söffker, “Optimal control of multi-source electric vehicles in real time using advisory dynamic programming,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 10394–10405, 2019. [CrossRef] [Google Scholar]
  46. M. Masih-Tehrani, M. R. H. Yazdi, V. Esfahanian, M. Dahmardeh, and H. Nehzati, “Wavelet-based power management for hybrid energy storage system,” Journal of modern power systems and clean energy, vol. 7, no. 4, pp. 779–790, 2019. [CrossRef] [Google Scholar]
  47. F. Tao, L. Zhu, Z. Fu, P. Si, and L. Sun, “Frequency decoupling-based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle using fuzzy control method,” IEEE Access, vol. 8, pp. 166491–166502, 2020. [CrossRef] [Google Scholar]
  48. H. He, S. Quan, and Y.-X. Wang, “Hydrogen circulation system model predictive control for polymer electrolyte membrane fuel cell-based electric vehicle application,” International Journal of Hydrogen Energy, vol. 45, no. 39, pp. 20382–20390, 2020. The 7th International Conference on Energy, Engineering and Environmental Engineering. [CrossRef] [Google Scholar]
  49. M. S. Khan, I. Ahmad, and F. Z. U. Abideen, “Output voltage regulation of fc-uc based hybrid electric vehicle using integral backstepping control,” IEEE Access, vol. 7, pp. 65693–65702, 2019. [CrossRef] [Google Scholar]
  50. A. Elgammal, “An efficient energy management scheme for a hybrid fc-sc-battery electric vehicle using model predictive control and multi-objective particle swarm optimization,” International Journal of Recent Technology and Engineering (IJRTE), vol. 8, pp. 4368–4380, 2019. [CrossRef] [Google Scholar]
  51. J. K. Maherchandani, N. Jain, and N. K. Garg, “Optimal genetic algorithm-pontryagin minimum principle approach for equivalent fuel consumption minimization in hybrid electric vehicle,” Journal of Electrical Systems, vol. 17, no. 2, pp. 182–193, 2021. [Google Scholar]
  52. B.-H. Nguyen, R. German, J. P. F. Trovao, and A. Bouscayrol, “Real-time energy management of battery/supercapacitor electric vehicles based on an adaptation of pontryagin’s minimum principle,” IEEE transactions on Vehicular Technology, vol. 68, no. 1, pp. 203–212, 2018. [Google Scholar]
  53. Y. Kim, M. Figueroa-Santos, N. Prakash, S. Baek, J. B. Siegel, and D. M. Rizzo, “Co-optimization of speed trajectory and power management for a fuel-cell/battery electric vehicle,” Applied Energy, vol. 260, p. 114254, 2020. [CrossRef] [Google Scholar]
  54. S. Hou, J. Gao, Y. Zhang, M. Chen, J. Shi, and H. Chen, “A comparison study of battery size optimization and an energy management strategy for fchevs based on dynamic programming and convex programming,” International journal of hydrogen energy, vol. 45, no. 41, pp. 21858–21872, 2020. [CrossRef] [Google Scholar]
  55. Y. Liu, J. Liang, J. Song, and J. Ye, “Research on energy management strategy of fuel cell vehicle based on multidimensional dynamic programming,” Energies, vol. 15, no. 14, p. 5190, 2022. [CrossRef] [Google Scholar]
  56. W. Li, G. Feng, and S. Jia, “An energy management strategy and parameter optimization of fuel cell electric vehicles,” World Electric Vehicle Journal, vol. 13, no. 1, p. 21, 2022. [CrossRef] [Google Scholar]
  57. R. Luca, M. Whiteley, T. Neville, P. R. Shearing, and D. J. Brett, “Comparative study of energy management systems for a hybrid fuel cell electric vehicle-a novel mutative fuzzy logic controller to prolong fuel cell lifetime,” International Journal of Hydrogen Energy, vol. 47, no. 57, pp. 24042–24058, 2022. [CrossRef] [Google Scholar]
  58. X. Jia and M. Zhao, “A hierarchical energy control strategy for hybrid electric vehicle with fuel cell/battery/ultracapacitor combining fuzzy controller and status regulator,” Electronics, vol. 12, no. 16, p. 3428, 2023. [CrossRef] [Google Scholar]
  59. A. U. Rahman, S. S. Zehra, I. Ahmad, and H. Armghan, “Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy,” Journal of Energy Storage, vol. 37, p. 102468, 2021. [CrossRef] [Google Scholar]
  60. R. B. Shaik and E. V. Kannappan, “Application of adaptive neuro-fuzzy inference rule-based controller in hybrid electric vehicles,” Journal of Electrical Engineering & Technology, vol. 15, pp. 1937–1945, 2020. [Google Scholar]
  61. S. Ahmadi, S. Bathaee, and A. H. Hosseinpour, “Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy,” Energy Conversion and Management, vol. 160, pp. 74–84, 2018. [CrossRef] [Google Scholar]
  62. H. Farhadi Gharibeh and M. Farrokhifar, “Online multi-level energy management strategy based on rule-based and optimization-based approaches for fuel cell hybrid electric vehicles,” Applied Sciences, vol. 11, no. 9, p. 3849, 2021. [CrossRef] [Google Scholar]
  63. H. Li, A. Ravey, A. N’Diaye, and A. Djerdir, “A novel equivalent consumption minimization strategy for hybrid electric vehicle powered by fuel cell, battery and supercapacitor,” Journal of Power Sources, vol. 395, pp. 262–270, 2018. [CrossRef] [Google Scholar]
  64. Y. Wang, Z. Sun, and Z. Chen, “Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine,” Applied energy, vol. 254, p. 113707, 2019. [CrossRef] [Google Scholar]
  65. J. Wang, J. Zhou, and D. Xu, “A real-time predictive energy management strategy of fuel cell/battery/ultra-capacitor hybrid energy storage system in electric vehicle,” in 2020 Chinese Automation Congress (CAC), pp. 3951–3954, IEEE, 2020. [CrossRef] [Google Scholar]
  66. H. A. Yavasoglu, Y. E. Tetik, and H. G. Ozcan, “Neural network-based energy management of multi-source (bat- tery/uc/fc) powered electric vehicle,” International Journal of Energy Research, vol. 44, no. 15, pp. 12416–12429, 2020. [CrossRef] [Google Scholar]
  67. W. Li, J. Ye, Y. Cui, N. Kim, S. W. Cha, and C. Zheng, “A speedy reinforcement learning-based energy management strategy for fuel cell hybrid vehicles considering fuel cell system lifetime,” International Journal of Precision Engineering and Manufacturing-Green Technology, pp. 1–14, 2021. [Google Scholar]
  68. X. Tang, H. Zhou, F. Wang, W. Wang, and X. Lin, “Longevity-conscious energy management strategy of fuel cell hybrid electric vehicle based on deep reinforcement learning,” Energy, vol. 238, p. 121593, 2022. [CrossRef] [Google Scholar]
  69. B. Xu, J. Shi, S. Li, H. Li, and Z. Wang, “Energy consumption and battery aging minimization using a q-learning strategy for a battery/ultracapacitor electric vehicle,” Energy, vol. 229, p. 120705, 2021. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.