Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00085
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202560100085
Published online 16 January 2025
  1. M. Hsini, E.M. Hcini, S. Zemni, Study of Magnetic Entropy Change in N d0.67 Ba0.33 M n0.98 F e0.02O3 by Means of Theoretical Models. J Supercond Nov Magn 31, 81–87 (2018). https://doi.org/10.1007/s10948-017-4167-5 [CrossRef] [Google Scholar]
  2. M. A. Hamad, H. R. Alamri, From conventional to inverse magnetocaloric effect in GdMn(1-x)CrxO3. Journal of Taibah University for Science, 16 (2022). https://doi.org/10.1080/16583655.2022.2100689 [Google Scholar]
  3. E.M. Ahmed, O.M. Hemeda, H.R. Alamri, et al. Magnetocaloric Effect in a - MnB Nanoparticles. Russ. J. Phys. Chem. 96 (Suppl 1), S101–S104 (2022). https://doi.org/10.1134/S0036024422140023 [CrossRef] [Google Scholar]
  4. M.A. Hamad, H.R. Alamri, a - MnO2 Nanorods’ Magnetocaloric Effect for Hydrogen Liquefaction. J Supercond Nov Magn 35, 515–518 (2022). https://doi.org/10.1007/s10948-021-06084-6 [CrossRef] [Google Scholar]
  5. Y. Miura, K. Nagao, M. Shirai, Phys. Rev. B. 69 (2004). https://doi.org/10.1103/PhysRevB.69.144413 [Google Scholar]
  6. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998). https://doi.org/10.1038/27167 [CrossRef] [Google Scholar]
  7. F.K. Patterson, C.W. Moeller, R. Ward Inorg. Chem., 196 (1963). https://doi.org/10.1021/ic50005a050 [Google Scholar]
  8. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998). https://doi.org/10.1038/27167 [CrossRef] [Google Scholar]
  9. M.N. Iliev, P. Padhan, A. Gupta, Temperature-dependent Raman study of multiferroic Bi2NiMnO6 thin films, Phys. Rev. B 77 (2008) 172303, DOI:https://doi.org/10.1103/PhysRevB.77.172303 [CrossRef] [Google Scholar]
  10. M. Fiebig, T. Lottermoser, D. Fröhlich, A.V. Goltsev, R.V. Pisarev. Observation of coupled magnetic and electric domains. Nature. 419(6909):818–820(2002). DOI: 10.1038/nature01077.PMID:12397352. [CrossRef] [PubMed] [Google Scholar]
  11. H. Das, M. De Raychaudhury, T. Saha-Dasgupta, Moderate to large magneto-optical signals in high Tc double perovskites, Appl. Phys. Lett. 92 (2008), https://doi.org/10.1063/1.2936304 [Google Scholar]
  12. H.R. Alamri, M.A. Hamad, Magnetocaloric effect of S r2FeMoO6 with an extremely broad temperature range, Journal of Magnetism and Magnetic Materials, Volume 587, 2023, 171244, https://doi.org/10.1016/j.jmmm.2023.171244. [CrossRef] [Google Scholar]
  13. Q. Tang, X.H. Zhu, Structural, Dielectric, Magnetic and Optical Properties of La-Doped Sr2fe0.5hf1.5o6 Double Perovskite Oxides. Available at SSRN: https://ssrn.com/abstract=4915540 [Google Scholar]
  14. P. Giannozzi et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, vol. 21, no. 39, (2009), DOI: 10.1088/0953-8984/21/39/395502. [CrossRef] [PubMed] [Google Scholar]
  15. T. H. Fischer and J. Almlöf, “General methods for geometry and wave function optimization,” J. Phys. Chem., vol. 96, no. 24, pp. 9768–9774, (1992), DOI: 10.1021/j100203a036 [CrossRef] [Google Scholar]
  16. J. M. Smith, S. P. Jones, and L. D. White, “Rapid Communication,” Gastroenterology, 72, 193, (1977), DOI: 10.1016/S0016-5085(77)80340-5. [CrossRef] [Google Scholar]
  17. H. F. Liu, S. C. Zhang, L. J. Liu, Z. W. Zhang, and J. L. Wang, “Density functional theory analysis of electronic and optical properties of orthorhombic perovskite CH3NH3S nX3(X = Br, I),” Chem.Phys. Lett., 740, 137062, (2020), DOI: 10.1016/j.cplett.2019.137062. [CrossRef] [Google Scholar]
  18. F.A. Najar, Kh.A. Sultan, ‘From halfmetallicity to dielectric tensor: Atomistic study of phase stability and optical spectrum of S r2FeMoO6 double perovskite and its potential applications’, Journal of Physics and Chemistry of Solids, Volume 171, (2022), https://doi.org/10.1016/j.jpcs.2022.111039. [CrossRef] [Google Scholar]
  19. S. Labidi, R. Masrour, A. Jabar, M. Ellouze, Mechanical, electronic and magnetic properties of double Sr2FeMoO6 perovskite: Density functional theory and Monte Carlo simulation, Journal of Magnetism and Magnetic Materials, Volume 523, (2021), https://doi.org/10.1016/j.jmmm.2020.167594. [CrossRef] [Google Scholar]
  20. F.A. Najar, S. Abass, K. Sultan, M.A. Kharadi, R. Samad Gfa Malik, Comparative study of optical properties of substitutionally doped La2NiMnO6 double perovskite ceramic: a potential candidate for solar cells and dielectrics, Phys. B Condens. Matter 621 (2021). https://doi.org/10.1016/j.physb.2021.413311. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.