Open Access
Issue
E3S Web Conf.
Volume 604, 2025
The 4th International Conference on Disaster Management (The 4th ICDM 2024)
Article Number 04002
Number of page(s) 9
Section Disaster Monitoring, Broadcasting, Early Warning and Information System
DOI https://doi.org/10.1051/e3sconf/202560404002
Published online 16 January 2025
  1. C. Özen, Emre Korkmaz, S. Bağış, and H. Toros, Performance Test of Weather Research and Forecasting (WRF) Model for Central Anatolia and Black Sea Regions of Turkey, 8th Atmos. Sci. Symp. April, 435–441. (2017). [Google Scholar]
  2. W. C. Skamarock et al., A Description of the Advanced Research WRF Model Version 4. (2019). [Google Scholar]
  3. T. G. Shepherd, Atmospheric circulation as a source of uncertainty in climate change projections, Nat. Geosci., 7(10), 703–708, (2014), https://doi.org/10.1038/ngeo2253. [CrossRef] [Google Scholar]
  4. D. Carvalho, A. Rocha, M. Gómez-Gesteira, and C. Santos, A Sensitivity Study of The WRF Model in Wind Simulation for An Area of High Wind Energy, Environ. Model. Softw., 33, 23–34, (2012). [CrossRef] [Google Scholar]
  5. P. M. Igri et al., Assessing the performance of WRF model in predicting high-impact weather conditions over Central and Western Africa: an ensemble-based approach, Nat. Hazards, 93, (3, 1565–1587, (2018). [CrossRef] [Google Scholar]
  6. W. Bourke, R. Buizza, and M. Naughton, Performance of the ECMWF and the BoM ensemble prediction systems in the Southern hemisphere, Mon. Weather Rev., 132(10), 2338–2357, (2004), https://doi.org/10.1175/1520-0493(2004)132<2338:POTEAT>2.0.CO;2. [CrossRef] [Google Scholar]
  7. C. H. Li, J. Berner, J. S. Hong, C. T. Fong, and Y. H. Kuo, The Taiwan WRF Ensemble Prediction System: Scientific Description, Model-Error Representation and Performance Results, Asia-Pacific J. Atmos. Sci., 56(1), 1–15, (2020). [Google Scholar]
  8. A. R. Sanusi, M. Taufik, and I Putu Santikayasa, The Use of Weather Research and Forecasting Model to Predict Rainfall in Tropical Peatland: 1. Model Parameterization, Agromet, 35(1), 49–59, (2021), https://doi.org/10.29244/j.agromet.35.1.49-59,. [Google Scholar]
  9. J. Jeworrek, G. West, and R. Stull, Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone, Weather Forecast., 34(4), 1097–1115, (2019), https://doi.org/10.1175/WAF-D-18-0178.1. [CrossRef] [Google Scholar]
  10. M. Taufik, M. Haikal, M. T. Widyastuti, C. Arif, and I. P. Santikayasa, The Impact of Rewetting Peatland on Fire Hazard in Riau, Indonesia, Sustainability, 15, (3, (2023), https://doi.org/10.3390/su15032169. [Google Scholar]
  11. E. Heriyanto, L. Syaufina, and M. Sobri, Forecasting Simulation of Smoke Dispersion from Forest and Land Fires in Indonesia, Procedia Environ. Sci., 24, 111–119, (2015), https://doi.org/https://doi.org/10.1016/j.proenv.2015.03.015. [CrossRef] [Google Scholar]
  12. B. Zhu, Z. Pu, A. W. Putra, and Z. Gao, Assimilating C-Band Radar Data for High-Resolution Simulations of Precipitation: Case Studies over Western Sumatra, Remote Sensing, 14, (1). (2022). https://doi.org/10.3390/rs14010042. [Google Scholar]
  13. B. Yang et al., Parametric and Structural Sensitivities of Turbine-Height Wind Speeds in the Boundary Layer Parameterizations in the Weather Research and Forecasting Model, J. Geophys. Res., 124, 5951–5969, (2019). [CrossRef] [Google Scholar]
  14. N. Srivastava and N. Blond, Impact of meteorological parameterization schemes on CTM model simulations, Atmos. Environ., 268, 118832, (2022), https://doi.org/10.1016/j.atmosenv.2021.118832. [CrossRef] [Google Scholar]
  15. D. Carvalho, A. Rocha, M. Gómez-Gesteira, and C. Santos, A sensitivity study of the WRF model in wind simulation for an area of high wind energy, Environ. Model. Softw., 33, 23–34, (2012), https://doi.org/10.1016/j.envsoft.2012.01.019. [CrossRef] [Google Scholar]
  16. L. G. Lavdas, Accuracy of National Weather Service wind direction forecasts at Macon and Augusta, Georgia, Natl. Weather Dig., 22(1), 22–26, (1997). [Google Scholar]
  17. N. Idris, M. Maswati, T. N. Usmawanda, and A. M. Sari, Effect of Temperature and Humidity on the Visibility of Mirage on the Runway of Sultan Iskandar Muda Airport, Aceh, Indonesia, J. Phys. Its Appl. 2(1), (2019) [Online]. Available: https://ejournal2.undip.ac.id/index.php/jpa/article/vi ew/6220 [Google Scholar]
  18. E. Yu, R. Bai, X. Chen, and L. Shao, Impact of Physical Parameterizations on Wind Simulation with WRF V3.9.1.1 over The Coastal Regions of North China at PBL Gray-Zone Resolution, Geosci. Model Dev. Discuss, 53, 1–37, (2022). [Google Scholar]
  19. S. Gholami, S. Ghader, H. Khaleghi-Zavareh, and P. Ghafarian, Sensitivity of WRF-simulated 10 m wind over the Persian Gulf to different boundary conditions and PBL parameterization schemes, Atmos. Res., 247, 105147, (2021), https://doi.org/10.1016/j.atmosres.2020.105147. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.