Open Access
Issue
E3S Web Conf.
Volume 606, 2025
2024 International Conference on Naval Architecture and Ocean Engineering (ICNAOE 2024)
Article Number 01006
Number of page(s) 7
Section Advancements in Combustion Engines and Fuel Technologies
DOI https://doi.org/10.1051/e3sconf/202560601006
Published online 21 January 2025
  1. R. Hilborn, C.J. Walters, D. Ludwig., Sustainable exploitation of renewable resources. Annu. Rev. Ecol. Syst. 26, 45 (1995) [CrossRef] [Google Scholar]
  2. A. Azarpour, S. Suhaimi, G. Zahedi, et al., A review on the drawbacks of renewable energy as a promising energy source of the future. Arab J. Sci. Eng. 38, 317 (2013) [CrossRef] [Google Scholar]
  3. F. Karagulian, C.A. Belis, C.F.C. Dora, et al., Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 120, 475 (2015) [CrossRef] [Google Scholar]
  4. M. Bunce, B.G. Bunting, J. Wang, et al., Experimental and statistical comparison of engine response as a function of fuel chemistry and properties in CI and HCCI engines. SAE Int. 1, 857 (2012) [Google Scholar]
  5. H. Zhao, T. Asmus, Z. Zhang., Homogeneous charge compression ignition (HCCI) Engines: key research and development issues. SAE Int. (2007) [Google Scholar]
  6. R.H. Thring., Homogeneous-charge compression-ignition (HCCI) engines. SAE Tech. Pap. 892068 (1989) [Google Scholar]
  7. J.E. Dec., Advanced compression-ignition engines - understanding the in-cylinder processes. Proc. Combust. Inst. 32, 2727 (2009) [CrossRef] [Google Scholar]
  8. S.Y. Hussaini, M.A. Noor, M.M. Rahman, et al., Procedia Technology 25, 854 (2016) [CrossRef] [Google Scholar]
  9. S. Kook, G.J. Wachtmeister, E. Schmidt, et al., The influence of charge dilution and fuel volatility on HCCI combustion characteristics. Combust. Flame 142, 312 (2005) [Google Scholar]
  10. S. Onishi, S.H. Jo, K. Shoda, et al., Active thermo-atmosphere combustion (ATAC) - a new combustion process for internal combustion engines. SAE Tech. Pap. 790501 (1979) [Google Scholar]
  11. J.E. Dec., Advanced compression-ignition engines - understanding the in-cylinder processes. Proc. Combust. Inst. 32, 2727 (2009) [CrossRef] [Google Scholar]
  12. K. Kobayashi, T. Sako, Y. Sakaguchi, et al., Development of HCCI natural gas engines. J. Nat. Gas Sci. Eng. 3, 651 (2011) [CrossRef] [Google Scholar]
  13. I. Lemberger, G. Floweday. 25cc HCCI engine fuelled with DEE. SAE Int. J. Engines 2, 1559 (2009) [CrossRef] [Google Scholar]
  14. N. Milovanovic, D. Blundell, R. Pearson, et al., Enlarging the operational range of a gasoline HCCI engine by controlling the coolant temperature. In Proceedings of the SAE World Congress, Detroit, MI, USA, 11 (2015) [Google Scholar]
  15. X. Duan, M.-C. Lai, M. Jansons, et al., A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel 285, 119142 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.