Open Access
Issue
E3S Web Conf.
Volume 606, 2025
2024 International Conference on Naval Architecture and Ocean Engineering (ICNAOE 2024)
Article Number 02008
Number of page(s) 7
Section Innovations in Energy Storage and Renewable Energy Technologies
DOI https://doi.org/10.1051/e3sconf/202560602008
Published online 21 January 2025
  1. K. Daems, et al., Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance. RSER. 191, 114136 (2024). [Google Scholar]
  2. H. Yang, N. Wu, Ionic conductivity and ion transport mechanisms of solid‐state lithium‐ion battery electrolytes: A review. ESE, 10, 51643-1671 (2022). [Google Scholar]
  3. Y. Chen, et al., Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. JPS, 521, 230921 (2022). [Google Scholar]
  4. Q. Lv, et al., Suppressing lithium dendrites within inorganic solid-state electrolytes. CRPS. 3, 1 (2022). [Google Scholar]
  5. Q. Liu, et al. Recent advances in stability issues of inorganic solid electrolytes and composite solid electrolytes for all‐solid‐state batteries. TCR. 22, 10 (2022) [Google Scholar]
  6. L. Lilu, et al. Advances in electrochemical stability of sulfide solid electrolytes. JCC 47, 10 (2019): 1367-1385. [Google Scholar]
  7. K.J. Kim, et al. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. AEM. 11.1 (2021): 2002689. [Google Scholar]
  8. M. Illbeigi, A. Fazlali, M. Kazazi, A.H. Mohammadi. SSI., 289, 180.2016 [Google Scholar]
  9. R. Wagner, G.J. Redhammer, D. Rettenwander, et al. Fast Li-ion-conducting garnet- related Li7-3xFexLa3Zr2O12 with uncommon I4-3d structure. CM. 28, 16, 5943-5951 (2016). [Google Scholar]
  10. G. Yuan, M.K. Wang, L. Long. Research advances on gel electrolytes for lithium-ion batteries. ANRE. 8, 4 331-338 (2020). [Google Scholar]
  11. H. Yang, et al. PDOL-based solid electrolyte toward Practical application: Opportunities and challenges. NML. 16, 1, 12, 7 (2024). [Google Scholar]
  12. X. Tian, Y. Yi, P. Yang, et al. High-charge density polymerized ionic networks boosting high ionic conductivity as quasi-solid electrolytes for high-voltage batteries. AMI. 11, 4, 4001-4010 (2019). [Google Scholar]
  13. L.X u, et al. Garnet solid electrolyte for advanced all‐solid‐state Li batteries. AEM. 11, 2 (2021) [Google Scholar]
  14. B. Liu, et al. Garnet solid electrolyte protected Li-metal batteries. AMI. 9, 22, 18809-18815 (2017) [Google Scholar]
  15. J.A. Isaac, D. Devaux, R. Bouchet. Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity. NM. 21, 12, 1412-1418 (2022). [Google Scholar]
  16. Y. Ma, C. Wang, K. Yang. Ultrathin and Robust Composite Electrolyte for Stable SolidState Lithium Metal Batteries. AMI. (2023). [Google Scholar]
  17. Z. Zhou, et al. PMMA-Based Composite Gel Polymer Electrolyte with Plastic Crystal Adopted for High-Performance Solid ECDs. POL. 15 (2023). [Google Scholar]
  18. T. Zhao, et al. Laminar composite solid electrolyte with succinonitrile-penetrating metal-organic framework (MOF) for stable anode interface in solid-state lithium metal battery. JPS. (2023). [Google Scholar]
  19. Y. Ruan, et al. A novel reinforced concrete-like composite solid-state electrolyte with enhanced performance for all-solid-state lithium batteries. JSEE. 28, 8 (2024) [Google Scholar]
  20. X. Zhou, et al. Difunctional MOF for dendrite-free all-solid-state lithium metal batteries by the synergistic effect of hydrogen bond and electrostatic interaction. NE. 108 (2023) [Google Scholar]
  21. Q. Cheng, et al. 3D interconnected MOF-derived asymmetric bilayer solid-state electrolyte for enabling homogeneous Li deposition of all-solid-state lithium metal batteries. JSEE. 28, 8, 2631-2642 (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.