Open Access
Issue
E3S Web Conf.
Volume 606, 2025
2024 International Conference on Naval Architecture and Ocean Engineering (ICNAOE 2024)
Article Number 02010
Number of page(s) 7
Section Innovations in Energy Storage and Renewable Energy Technologies
DOI https://doi.org/10.1051/e3sconf/202560602010
Published online 21 January 2025
  1. Y. Tang. A review of the application status and development of lithium-ion battery in electric vehicles. Environ. Technol. 41, 94-100 (2023). [Google Scholar]
  2. W. Zhang, W. Xiao, Y. Yi, et al. Research progress on safety modification strategies of lithium-ion battery. Energy Storage Sci. Technol., 1-18 (2024). [Google Scholar]
  3. X. Pan, C. Shao, X. Wang. Analysis of thermal runaway characteristics and control methods of lithium batteries for vehicles. Times Automob. 17, 145-147 (2024). [Google Scholar]
  4. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He. Thermal runaway mechanism of lithium-ion battery for electric vehicles: A review. Energy Storage Mater. 10, 246-267 (2018). [CrossRef] [Google Scholar]
  5. X. Feng, S. Zheng, D. Ren, X. He, L. Wang, X. Liu, et al. Key characteristics for thermal runaway of Li-ion batteries. Energy Procedia 158, 4684-4689 (2019). [CrossRef] [Google Scholar]
  6. Y. Zhi, R. Lu, Q. Yu, & F. Yan. Analysis of the characteristics and prevention technologies of thermal runaway in power batteries. Automot. Eng. 46, 139-150 (2024). [Google Scholar]
  7. Z. Jia, S. Wang, P. Qin, C. Li, L. Song, Z. Cheng, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating. J. Energy Storage 61, 106791 (2023). [CrossRef] [Google Scholar]
  8. X. Zhu, Z. Wang, Y. Wang, H. Wang, C. Wang, L. Tong, M. Yi. Overcharge investigation of large-format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method. Energy. 169, 868-880 (2019). [CrossRef] [Google Scholar]
  9. C. Jin, Y. Sun, H. Wang, Y. Zheng, S. Wang, X. Rui, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling. Appl. Energy 312, 118760 (2022). [CrossRef] [Google Scholar]
  10. X. Zhu, Z. Wang, H. Wang, W. Hsin. Research review on thermal runaway and safety management of lithium-ion power batteries. J. Mech. Eng. 56, 91-118 (2020). [Google Scholar]
  11. Y. Zheng, N. Lin, Y. Zhao, W. Wang, Y. Qian, Y. Zhu, Y. Qian. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium-ion battery anodes. Energy Storage Mater. 17, 93-100 (2019). [CrossRef] [Google Scholar]
  12. J. Lang, Y. Long, Q. Jiale, X. Luo, H. Wei, K. Huang, H. Zhang, L. Qi, Q. Zhang, Z. Li, W. Hui. One-pot solution coating of high-quality LiF layer to stabilize Li metal anode. Energy Storage Mater. 16, 85-90 (2019). [CrossRef] [Google Scholar]
  13. J. Park, J. Kim, C. Lee, S. Lee. Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials. J. Power Sources 263, 209-216 (2014). [CrossRef] [Google Scholar]
  14. G. Xu, Q. Liu, K. K. Lau, Y. Liu, X. Liu, H. Gao, X. Zhou, M. Zhuang, Y. Ren, J. Li, M. Shao, M. Ouyang, F. Pan, Z. Chen, K. Amine, G. Chen. Building ultra conformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484-494 (2019). [CrossRef] [Google Scholar]
  15. H. Zhao, Y. Xueqing, J. Li, B. Li, H. Shao, L. Li, & Y. Deng. Film-forming electrolyte additives for rechargeable lithium-ion batteries: Progress and outlook. J. Mater. Chem. A 7, 8700-8722 (2019). [CrossRef] [Google Scholar]
  16. H. Zhao, Y. Xueqing, J. Li, B. Li, H. Shao, L. Li, & Y. Deng. Film-forming electrolyte additives for rechargeable lithium-ion batteries: Progress and outlook. J. Mater. Chem. A 7, 8700-8722 (2019). [CrossRef] [Google Scholar]
  17. D. He, J. Wang, Y. Peng, B. Li, C. Feng, L. Shen, S. Ma. Research advances on thermal runaway mechanism of lithium-ion batteries and safety improvement. Sustain. Mater. Technol. 41, e01017 (2024). [Google Scholar]
  18. C. Zhu, J. Liu, Y. Xiaohua, Y. Zhang, X. Jiang, P. Dong, Y. Zhang. 4-Bromoanisole (4BA) as additive for overcharge protection of lithium-ion batteries. Int. Electrochem. Sci. 14, 4571-4579 (2019). [CrossRef] [Google Scholar]
  19. S. Wang, J. Liu, Y. Xiaohua, J. Liu, C. Zhu, J. Rong, Q. Wang, Z. Yuan, Y. Zhang. Electrochemical behavior of 3, 4-ethylenedioxythiophene as an anti-overcharge additive for lithium-ion batteries. Int. J. Electrochem. Sci. 14, 9527-9536 (2019). [CrossRef] [Google Scholar]
  20. S. P. Herle. Ceramic coating on battery separator (2022). [Google Scholar]
  21. Z. Xu, L. Zheng, B. Chen, T. Zhang, X. Chang, S. Wei, & Z. Dai. Overview of research on composite electrolytes for solid-state batteries. Energy Storage Sci. Technol. 10, 2117-2126 (2021). [Google Scholar]
  22. P. Bai, J. Li, F. R. Brushett, & M. Z. Bazant. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221-3229 (2016). [CrossRef] [Google Scholar]
  23. S. P. Herle. Ceramic coating on battery separator (2022). [Google Scholar]
  24. C. Kim, J. Yoo, K. Jeong, K. Kim, & C. Yi. Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration. J. Power Sources. 289, 41-49 (2015). [CrossRef] [Google Scholar]
  25. C. Shi, P. Zhang, L. Chen, P. Yang, & J. Zhao. Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J. Power Sources 270, 547-553 (2014). [CrossRef] [Google Scholar]
  26. W. Shin & D. Kim. High-performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. J. Power Sources. 226, 54-60 (2013). [CrossRef] [Google Scholar]
  27. J. Choi, S. Kim, & D. Kim. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources. 195, 6192-6196 (2010). [CrossRef] [Google Scholar]
  28. Z. Wang, D. Peng, & K. Sun. Research progress of separator materials for lithium-ion batteries. CIESC J. 69, 282-294 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.