Open Access
Issue
E3S Web Conf.
Volume 606, 2025
2024 International Conference on Naval Architecture and Ocean Engineering (ICNAOE 2024)
Article Number 02014
Number of page(s) 7
Section Innovations in Energy Storage and Renewable Energy Technologies
DOI https://doi.org/10.1051/e3sconf/202560602014
Published online 21 January 2025
  1. S. Qian. Research Progress of Metal Catalysts for Sulfur Reduction of Lithium Sulfur Batteries. Journal of Organic Chemistry Research, 11 (04), 314-333 (2023). [CrossRef] [Google Scholar]
  2. J. Wang, L. Jia, J. Zhong, Q. Xiao, C. Wang, K. Zang, H. Liu, H. Zheng, J. Luo, J. Yang, H. Fan, W. Duan, Y. Wu, H. Lin, & Y. Zhang. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Materials, 18, 246-252 (2018). [Google Scholar]
  3. Y. Li, J. Wu, B. Zhang, W. Wang, G. Zhang, Z. Seh, N. Zhang, J. Sun, L. Huang, J. Jiang, J. Zhou, & Y. Sun. Fast Conversion and Controlled Deposition of Lithium (Poly)sulfides in Lithium-Sulfur Batteries Using High-Loading Cobalt Single Atoms. Energy Storage Materials, 30, 250-259 (2020). [CrossRef] [Google Scholar]
  4. L. Chen, J. Xia, Z. Lai, D. Wu, J. Zhou, S. Chen, X. Meng, Z. Wang, H. Wang, L. Zheng, L. Xu, X. Lv, C. W. Bielawski, & J. Geng. Coordinatively Unsaturated Co Single-Atom Catalysts Enhance the Performance of Lithium-Sulfur Batteries by Triggering Strong d -p Orbital Hybridisation. ACS Nano (2024). [Google Scholar]
  5. H. Ye, J. Sun, S. Zhang, H. Lin, T. Zhang, Q. Yao, & J. Lee. Stepwise Electrocatalysis as a Strategy Against Polysulfide Shuttling in Li-S Batteries. ACS Nano, 13, 1420814216 (2019). [Google Scholar]
  6. Y. Chen, W. Zhang, D. Zhou, H. Tian, D. Su, C. Wang, D. Stockdale, F. Kang, B. Li, & G. Wang. Co-Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected- Pore Architecture as an Efficient Polysulfide Mediator for Lithium-Sulfur Batteries. ACS Nano, 13 (4), 4731-4741 (2019). [CrossRef] [PubMed] [Google Scholar]
  7. C. Yang, F. Wang, D. You, W. Yang, Y. Wang, W. Han, Y. Zhang, Z. Zhu, & X. Li. In-situ chemical state transition of Ni nano-metal catalytic site promotes the reaction kinetics of lithium-sulfur battery. Chemical Engineering Journal, 496, 153812 (2024). [CrossRef] [Google Scholar]
  8. C. Zhao, C. Shen, F. Xin, Z. Sun, & W. Han. Prussian blue-derived Fe2O3/sulfur composite cathode for lithium-sulfur batteries. Materials Letters, 137, 52-55 (2014) [CrossRef] [Google Scholar]
  9. H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G. W. Zheng, & J. Y. Lee. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy & Environmental Science, 10 (6), 1476-1486 (2017). [CrossRef] [Google Scholar]
  10. Z. Gao, Y. Schwab, Y. Zhang, N. Song, & X. Li. Ferromagnetic Nanoparticle-Assisted Polysulfide Trapping for Enhanced Lithium-Sulfur Batteries. Advanced Functional Materials, 28 (20) (2018). [Google Scholar]
  11. X. He, Z. Xie, W. Zhang, Z. Gao, Y. Cheng, X. Zhang, Y. He, F. Kang, & L. Peng. Operationally Robust Li-S Batteries at High Current Density Enabled by Metallic, Dual Sulfurphilic Nickel Boride. ACS Materials Letters, 5307-5315 (2024). [CrossRef] [Google Scholar]
  12. X. Liu. Research Status of Iron-Based Compounds as Catalysis for Lithium-Sulfur Batteries. Material Sciences, 14 (02), 130-141 (2024). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.