Open Access
Issue |
E3S Web Conf.
Volume 606, 2025
2024 International Conference on Naval Architecture and Ocean Engineering (ICNAOE 2024)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 9 | |
Section | Carbon Management and Environmental Protection Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202560603001 | |
Published online | 21 January 2025 |
- R. Lindsey, L. Dahlman. Climate Change: Global Temperature. NOAA Climate.gov. 116, 058303 (2024) [Google Scholar]
- K.C. Nadeau, I. Agache, M. Jutel, et al. Climate change: A call to action for the United Nations. Allergy. 77 (4), 1087-1090 (2022) [CrossRef] [PubMed] [Google Scholar]
- O.H.P. Gunawardene, C.A. Gunathilake, K. Vikrant, et al. Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review. Atmosphere. 13 (3), 397 (2022) [CrossRef] [Google Scholar]
- Patel, H.A., Byun, J., Yavez, C.T. Carbon dioxide capture adsorbents: Chemistry and Methods. ChemSusChem. 10, 1303-1317 (2017). [CrossRef] [PubMed] [Google Scholar]
- W. Jung, J.S. Lee, H. Yoon, et al. Water membrane for carbon dioxide separation. Separation and Purification Technology. 210, 540-548 (2018) [Google Scholar]
- D. Moreira, J.C.M. Pires. Atmospheric CO₂ capture by algae: Negative carbon dioxide emission path. Bioresource Technology. 215, 371-379 (2016). [CrossRef] [Google Scholar]
- B. Wang, Y. Li, N. Wu, et al. CO₂ bio-mitigation using microalgae. Applied Microbiology and Biotechnology. 79 (5), 707-718 (2008) [CrossRef] [PubMed] [Google Scholar]
- B.E. Logan, K. Rabaey. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies. Science. 337, 686-690 (2012) [CrossRef] [PubMed] [Google Scholar]
- A. Cachaza, D. Gómez-Díaz, A. Montáns, et al. Carbon dioxide chemical absorption by solvents based on diamine and amines blend. AIChE Journal. 64 (7), 2702-2710 (2018) [CrossRef] [Google Scholar]
- H.M. Kvamsdal, J.P. Jakobsen, K.A. Hoff. Dynamic modeling and simulation of a CO₂ absorber column for post-combustion CO2 capture. Chemical Engineering and Processing: Process Intensification. 48 (1), 135-144 (2009) [CrossRef] [Google Scholar]
- S.J. Gerdemann, W.K. O’Connor, D.C. Dahlin. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. Environmental Science & Technology. 41 (7), 2587-2593 (2007) [CrossRef] [PubMed] [Google Scholar]
- M.I. Rashid, Z. Yaqoob, M.A. Mujtaba, et al. Carbon capture, utilization and storage opportunities to mitigate greenhouse gases. Heliyon. 10(3), e25419 (2024) [CrossRef] [Google Scholar]
- B. Taleb, R. Jahjah, D. Cornu, et al. Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction. Molecules. 28 (22), 7541 (2023) [CrossRef] [Google Scholar]
- H. Tang, T. Qiu, X. Wang, et al. A Brief Review of Recent Theoretical Advances in Fe- Based Catalysts for CO₂ Hydrogenation. Molecules. 29 (6), 1194 (2024) [CrossRef] [Google Scholar]
- A. Bratovčić, V. Tomašić. Design and Development of Photocatalytic Systems for Reduction of CO₂ into Valuable Chemicals and Fuels. Processes. 11 (5), 1433 (2023) [CrossRef] [Google Scholar]
- A.G.S. Hussien, K. Polychronopoulou. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. Nanomaterials. 12 (19), 3400 (2022) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.