Open Access
Issue
E3S Web Conf.
Volume 606, 2025
2024 International Conference on Naval Architecture and Ocean Engineering (ICNAOE 2024)
Article Number 05003
Number of page(s) 7
Section Renewable Energy Applications and Efficiency Enhancements
DOI https://doi.org/10.1051/e3sconf/202560605003
Published online 21 January 2025
  1. G. P. Beretta, World energy consumption and resources: an outlook for the rest of the century. International journal of environmental technology and management, 7, 99-112 (2007) [CrossRef] [Google Scholar]
  2. E. Efficiency, Tracking industrial energy efficiency and CO2 emissions. International Energy Agency, 34, 1-12 (2007) [Google Scholar]
  3. Q. Zhang, X. Zhao, H. Lu, T. Ni, & Y. Li. Waste energy recovery and energy efficiency improvement in China’s iron and steel industry. Applied Energy, 191, 502-520 (2017) [CrossRef] [Google Scholar]
  4. N. A. Madlool, R. Saidur, M. S. Hossain, & N.A. Rahim. A critical review on energy use and savings in the cement industries. Renewable and sustainable energy reviews, 15, 2042-2060 (2011) [CrossRef] [Google Scholar]
  5. J. M. Clairand, M. Briceno-Leon, G. Escriva-Escriva & A. M. Pantaleo. Review of energy efficiency technologies in the food industry: trends, barriers, and opportunities. IEEE Access, 8, 48015-48029 (2020) [CrossRef] [Google Scholar]
  6. P. Christodoulides, R. Agathokleous, L. Aresti, S. A. Kalogirou, S. A. Tassou, & G. A. Florides. Waste heat recovery technologies revisited with emphasis on new solutions, including heat pipes, and case studies. Energies, 15, 384 (2022) [CrossRef] [Google Scholar]
  7. S. Brückner, S. Liu, L. Miró, M. Radspieler, L. F. Cabeza, & E. Lävemann. Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Applied Energy, 151, 157-167 (2015) [CrossRef] [Google Scholar]
  8. M. Biondi, A. Giovannelli, G. Di Lorenzo, & C. Salvini. Techno-economic analysis of as CO2 power plant for waste heat recovery in steel industry. Energy Reports, 6, 298-304 (2020) [CrossRef] [Google Scholar]
  9. M. D. P. Arrieta, & F. R. P. Arrieta, KCS34 evaluation for WHR in cement industry. International Journal of Advanced Engineering Research and Science, 5, 268245 (2018) [Google Scholar]
  10. R. Agahi, Waste Heat to Power System in Oil and Gas Industry Improves Plant Power Efficiency. In Abu Dhabi International Petroleum Exhibition and Conference (p. D032S213R001). SPE (2019) [Google Scholar]
  11. M. J. Tchanche, L. Y. A. Papadakis, & J. R. J. van der Meer. Low-Temperature Geothermal and Waste Heat Recovery for Power Generation Using Organic Rankine Cycles: Case Study in the Paper Industry. Energy, 102, 490-500 (2016) [Google Scholar]
  12. Frick, S., & Huenges, E. Geothermal Power Plants: Principles, Application, Case Studies and Environmental Impact. Energy Technology, 1, 365-366 (2013). [CrossRef] [Google Scholar]
  13. L. L. O. Silva, M. J. Alvarado, & D. J. Smith, Organic Rankine Cycle for Low- Temperature Waste Heat Recovery: A Review of Recent Advances. Journal of Energy Resources Technology, 140, 052301-052315 (2018) [Google Scholar]
  14. Rowe, D. M. (Ed.). Thermoelectrics handbook: macro to nano (CRC press, 2018) [Google Scholar]
  15. Goldsmid, H. J. Introduction to thermoelectricity (Berlin, Springer, 2010) [CrossRef] [Google Scholar]
  16. Y. Ma, & W. Liu, Application of heat pumps in the food and beverage industry: A review. Journal of Cleaner Production, 276, 124046 (2020) [Google Scholar]
  17. X. Li, & J. Xu, Heat pump drying in the textile industry: Performance and applications. Energy Procedia, 152, 254-259 (2018) [Google Scholar]
  18. A. Khaliq, & A M Application of absorption chillers in pharmaceutical manufacturing: Energy and cost savings. Pharmaceutical Engineering, 39, 20-29 (2019). [Google Scholar]
  19. F. A. Ozturk, M. M. Yavuz, & S. Y. Altintas, Waste heat recovery in steel industry: A review. Journal of Cleaner Production, 242, 118451 (2020) [CrossRef] [Google Scholar]
  20. X. Zhao, C. Liu, & H. Wang, Application of heat recovery in steel manufacturing: Analysis and case studies. Energy Reports, 5, 224-232 (2019) [Google Scholar]
  21. K. J. Smith, A. H. Brown, & M. P. Johnson, Enhanced waste heat recovery in steel plants: Optimization and performance evaluation. Applied Energy, 222, 712-724 (2018) [Google Scholar]
  22. M. A. Rosen, B. T. Kar, & S. L. Behie. Waste heat recovery in chemical and petrochemical industries: A review. Energy, 233, 121076 (2021) [CrossRef] [Google Scholar]
  23. J. P. S. Costa, M. A. Lima, & R. J. S. Silva. Economic and environmental benefits of waste heat recovery in the petrochemical industry. Chemical Engineering (2019) [Google Scholar]
  24. K. J. Liu, H. M. Zhang, & Y. Q. Wu, Optimization of waste heat recovery systems in chemical processes: A case study. Applied Thermal Engineering, 129, 727-735 (2018) [Google Scholar]
  25. R. G. Z. Silva, A. J. D. V. Alves & P. A. S. Ferreira, Analysis and optimization of waste heat recovery systems in cement plants. Energy, 141, 270-281 (2017) [Google Scholar]
  26. J. H. M. Kim, S. W. Lee, & K. J. Nam, Waste heat recovery from glass manufacturing: System design and economic feasibility. Journal of Cleaner Production, 212, 1034-1043 (2019) [Google Scholar]
  27. N. T. Pham, L. H. Nguyen, & T. A. Bui, A comparative study of waste heat recovery in cement and glass industries. Energy Reports, 6, 145-155 (2020) [Google Scholar]
  28. S. M. H. Al-Kayiem, M. M. Abdul-Rahman, & A. N. A. Ibrahim, Key success factors and best practices for waste heat recovery in industrial applications. Energy, 197, 117199 (2020) [CrossRef] [Google Scholar]
  29. L. T. Bui, N. A. Vu, & M. D. Le, A comparative study of waste heat recovery systems across different industries. Renewable and Sustainable Energy Reviews, 101, 490-505 (2019) [Google Scholar]
  30. M. B. Patel, R. R. Shah, & P. M. Kumar, Global best practices in waste heat recovery: Case studies and analysis. Energy Reports, 7, 178-188 (2021) [Google Scholar]
  31. S. J. Lee, C. K. Yang, & H. R. Kim, Successful applications of waste heat recovery technologies in industrial processes. Journal of Cleaner Production, 272, 122900 (2020) [Google Scholar]
  32. J. T. Nguyen, F. R. Smith, & E. W. Johnson, Innovative waste heat recovery solutions: Lessons from leading global projects. Applied Energy, 241, 64-74 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.