Open Access
Issue
E3S Web Conf.
Volume 607, 2025
6th International Conference of GIS USERS (ERRACHIDIA GIS-USERS’2024)
Article Number 01002
Number of page(s) 8
Section Geology-Natural Resources-Heritage
DOI https://doi.org/10.1051/e3sconf/202560701002
Published online 22 January 2025
  1. E. Farahbakhsh, R. Chandra, H. K. Olierook, R. Scalzo, C. Clark, S. M. Reddy, et al., Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. International Journal of Remote Sensing. 41, 1760-1787, (2020). [CrossRef] [Google Scholar]
  2. A. Javhar, X. Chen, A. Bao, A. Jamshed, M. Yunus, A. Jovid, et al., Comparison of multi-resolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: a case study of Alichur Area, SE Pamir. Remote Sensing. 11, 778, (2019). [CrossRef] [Google Scholar]
  3. A. Jellouli, A. El Harti, Z. Adiri, M. Chakouri, J. El Hachimi, and E. M. Bachaoui, Application of optical and radar satellite images for mapping tectonic lineaments in kerdous inlier of the Anti-Atlas belt, Morocco. Remote Sensing Applications: Society and Environment. 22, 100509, (2021). [CrossRef] [Google Scholar]
  4. A. Shebl and Á. Csámer, Reappraisal of DEMs, Radar and optical datasets in lineaments extraction with emphasis on the spatial context. Remote Sensing Applications: Society and Environment. 24,100617, (2021). [CrossRef] [Google Scholar]
  5. M. Heddi, D. Eastaff, and J. Petch, Relationships between tectonic and geomorphological linear features in the Guadix‐Baza basin, southern Spain. Earth Surface Processes and Landforms. 24, 931-942, (1999). [CrossRef] [Google Scholar]
  6. S. Hajaj, A. El Harti, and A. Jellouli, Assessment of hyperspectral, multispectral, radar, and digital elevation model data in structural lineaments mapping: A case study from Ameln valley shear zone, Western Anti-Atlas Morocco. Remote Sensing Applications: Society and Environment. 27, 100819, 2022. [CrossRef] [Google Scholar]
  7. M. Mwaniki, D. N. Kuria, M. Boitt, and T. Ngigi, Image enhancements of Landsat 8 (OLI) and SAR data for preliminary landslide identification and mapping applied to the central region of Kenya. Geomorphology, 282, 162-175, (2017). [CrossRef] [Google Scholar]
  8. K. Ouchi, Synthetic Aperture Radar Over Ocean: A Review, IEICE Technical Report; IEICE Tech. Rep. 121, 1-6, (2021). [Google Scholar]
  9. S. Cote, M. Lapointe, P.-P. Vezina, E. Arsenault, C. Casgrain, and A. Boyer, Status of the RADARSAT Constellation Mission in the third year of operation, in EUSAR. 14th European Conference on Synthetic Aperture Radar. 1-6, (2022). [Google Scholar]
  10. S. G. Ouattara, B. Dibi, and J. M. O. Mangoua, Contribution of RADARSAT-1 Images to Structural Geological Mapping and Lineament Density Assessment in the Lobo River Watershed at Nibéhibé (Centre-West, Côte d'Ivoire). European Journal of Environment and Earth Sciences, 2, 15-20, (2021). [CrossRef] [Google Scholar]
  11. R. Torres, P. Snoeij, D. Geudtner, D. Bibb, M. Davidson, E. Attema, et al., GMES Sentinel-1 mission. Remote Sensing of Environment,120, 9-24, (2012). [CrossRef] [Google Scholar]
  12. S. Mastrorosa, M. Crespi, L. Congedo, and M. Munafò, Land Consumption Classification Using Sentinel 1 Data: A Systematic Review. Land, 12, p. 932, (2023). [CrossRef] [Google Scholar]
  13. A. B. Pour, B. Zoheir, B. Pradhan, and M. Hashim, Editorial for the special issue: Multispectral and hyperspectral remote sensing data for mineral exploration and environmental monitoring of mined areas. 13, 519, (2021). [Google Scholar]
  14. L. San Martín, N. S. Morandeira, R. Grimson, M. Rajngewerc, E. B. González, and P. Kandus, The contribution of ALOS/PALSAR-1 multi-temporal data to map permanently and temporarily flooded coastal wetlands. International Journal of Remote Sensing, 41, 1582-1602, (2020). [CrossRef] [Google Scholar]
  15. A. Aboulfaraj, A. Tabit, A. Algouti, A. Algouti, S. Moujane, A. Farah, et al., Contribution of Remote Sensing and Structural Geology in the Mapping of Tectonic Fractures in the Zat Region (Western High Atlas, Morocco). Journal of the Indian Society of Remote Sensing, 1-21, (2024). [Google Scholar]
  16. P. Huvelin, Etude géologique et gîtologique du massif hercynien des Jebilet (Maroc occidental): Service géologique du Maroc, (1977). [Google Scholar]
  17. M. Chakouri, R. Lhissou, A. El Harti, S. Maimouni, and Z. Adiri, Assessment of the image-based atmospheric correction of multispectral satellite images for geological mapping in arid and semi-arid regions. Remote Sensing Applications: Society and Environment, 20, 100420, (2020). [CrossRef] [Google Scholar]
  18. M. Chakouri, A. El Harti, R. Lhissou, J. El Hachimi, and A. Jellouli, Geological and mineralogical mapping in Moroccan central Jebilet using multispectral and hyperspectral satellite data and machine learning. Int. J, 9, 5772-5783, (2020). [Google Scholar]
  19. J. Cheng, Q. Xiao, J. Wen, Y. Tang, D. You, Z. Bian, et al., Review of methods and remote sensing cases using spectral library. Remote Sensing Technology and Application, 35, 267-286, (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.