Open Access
Issue
E3S Web Conf.
Volume 607, 2025
6th International Conference of GIS USERS (ERRACHIDIA GIS-USERS’2024)
Article Number 04024
Number of page(s) 9
Section Climate Change-Environment-Natural Hazards
DOI https://doi.org/10.1051/e3sconf/202560704024
Published online 22 January 2025
  1. L. Barrat Mentaschi, M.I. Vousdoukas, JF. Pekel et al, Global long-term observations of coastal erosion and accretion. Sci Rep 8, 12876 (2018). https://doi.org/10.1038/s41598- 018-30904-w. [CrossRef] [PubMed] [Google Scholar]
  2. K. Vos, K.D. Splinter, J. Palomar-Vázquez, et al, Benchmarking satellite-derived shoreline mapping algorithms. Commun Earth Environ 4, 345 (2023). https://doi.org/10.1038/s43247-023-01001-2. [CrossRef] [Google Scholar]
  3. M. Hakkou, A. Benmohammadi, B. Castelle, X. Bertin, M. Labrimi, A. El Hassani, M. Layachi, Perspectives d’optimisation technique de la gouvernance environnementale des activités du dragage du sable marin au Maroc. Bulletin de l’institut scientifique, Rabat, section Sciences de la Terre, 2015, N°37 (2015). [Google Scholar]
  4. L. Mentaschi, M.I. Vousdoukas, J.-F. Pekel, E. Voukouvalas, L. Feyen, Global long- term observations of coastal erosion and accretion. Sci. Rep. 8, 12876 (2018). https://doi.org/10.1038/s41598-018-30904-w. [CrossRef] [Google Scholar]
  5. G. Anfuso, C. Loureiro, M. Taaouati, T. Smyth, D. Jackson, Spatial variability of beach impact from post-tropical cyclone Katia (2011) on Northern Ireland’s North Coast. Water 12 (5), 1380 (2020). https://doi.org/10.3390/w12051380. [CrossRef] [Google Scholar]
  6. B. Castelle, G. Masselink, T. Scott, C. Stokes, A. Konstantinou, V. Marieu, S. Bujan, Satellite-derived shoreline detection at a high-energy meso-macrotidal beach. Geomorphology 383, 107707 (2021). https://doi.org/10.1016/j.geomorph.2021.107707. [CrossRef] [Google Scholar]
  7. J.L. Merkens, L. Reimann, J. Hinkel, A.T. Vafeidis, Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways. Glob. Planet. Chang. 145, 57–66 (2016). https://doi.org/10.1016/j.gloplacha.2016.08.009. [CrossRef] [Google Scholar]
  8. Stive, M.J.F.; de Schipper, M.A.; Luijendijk, A.P., Aarninkhof, S.G.J.; van Gelder-Maas, C.; van Thiel de Vries, J.S.M.; de Vries, S.;, Henriquez, M.; Marx, S., and Ranasinghe, R., 2013. A new alternative to saving our beaches from local sealevel rise: the sand engine. Journal of Coastal Research, 29(5), 1001–1008. https://doi.org/10.2112/JCOASTRES-D-13-00070.1. [CrossRef] [Google Scholar]
  9. A, Oueslati, Le littoral de Oued Laou: de l'apport de l'étude géomorphologique à la connaissance de ses aptitudes à l'aménagement et à la prévention des risques naturels et de la dégradation des paysages. Travaux de l'Institut Scientifique, Rabat, série générale, (5), 1-16. [Google Scholar]
  10. Vos K. Splinter K. D., Harley M. D., Simmons J. A. & Turner I. L. 2019. CoastSat: A Google Earth Engine enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling and Software, 122. https://doi.org/10.1016/j.envsoft.2019 .104528. [Google Scholar]
  11. B. El Moutchou, L. EL FADEL, & K. El Hajjaji, Evolution morphodynamique et morphosédimentaire du littoral méditerranéen de Oued Laou (Tétouan, Maroc). In Conférence Méditerranéenne Côtière et Maritime Edition 2, Tanger, Maroc (2011). https://doi:10.5150/cmcm.2011.034. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.