Open Access
Issue |
E3S Web Conf.
Volume 607, 2025
6th International Conference of GIS USERS (ERRACHIDIA GIS-USERS’2024)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 10 | |
Section | SIG-Open Source and Web Applications | |
DOI | https://doi.org/10.1051/e3sconf/202560705001 | |
Published online | 22 January 2025 |
- F. Poux, R. Billen, Voxel-Based 3D Point Cloud Semantic Segmentation: Unsupervised Geometric and Relationship Featuring vs Deep Learning Methods. ISPRS Int. J. Geo-Inf. 8, 213 (2019). https://doi.org/10.3390/ijgi8050213 [CrossRef] [Google Scholar]
- J. Junaidi, D. Syandriaji, Photogrammetry Technology by Using DJI Phantom 4 RTK in Batang Mahat, Lima Puluh Kota Regency West Sumatera. J. Ilm. Rekayasa Sipil. 20, 61–70 (2023). https://doi.org/10.30630/jirs.v20i1.1055 [CrossRef] [Google Scholar]
- A. CROITORU, M. MILUȚ, C. BUZATU, I. CROITORU, R. Oprescu, USE OF THE STONEX S9 PLUS GPS RECEIVER FOR THE PREPARATION OF CADASTRE DOCUMENTATION FOR THE REGISTRATION IN THE LAND BOOK OF A PROPERTY. 51, 260–266 (2020). https://doi.org/10.52846/AAMC.2021.02.31 [Google Scholar]
- A.D.M. Rahman, A.B. Cahyono, Analysis Of 3-D Building Modeling Using Photogrammetric Software: Agisoft Metashape And Micmac. IOP Conf. Ser. Earth Environ. Sci. 1276, 012044 (2023). https://doi.org/10.1088/1755-1315/1276/1/012044 [CrossRef] [Google Scholar]
- E. Nadal-Romero, J. Revuelto, M.P. Errea, J.I. Moreno, The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees). Soil. 1, 1–13 (2015). https://doi.org/10.5194/soil-1-561-2015 [CrossRef] [Google Scholar]
- S. Jiménez-Jiménez, W. Ojeda, M. Marcial, J. Enciso, Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS Int. J. Geo-Inf. 10, 285 (2021). https://doi.org/10.3390/ijgi10050285 [CrossRef] [Google Scholar]
- H.A. Sadeq, Accuracy assessment using different UAV image overlaps. J. Unmanned Veh. Syst. 7, 175–193 (2019). https://doi.org/10.1139/juvs-2018-0014 [CrossRef] [Google Scholar]
- K. Singh, A. Frazier, A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. Int. J. Remote Sens. 39, 1–21 (2018). https://doi.org/10.1080/01431161.2017.1420941 [CrossRef] [Google Scholar]
- R. El Meouche, I. Hijazi, O.A. Poncet, M. Abunemeh, M. Rezoug, UAV PHOTOGRAMMETRY IMPLEMENTATION TO ENHANCE LAND SURVEYING, COMPARISONS AND POSSIBILITIES. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-2/W2, 107–114 (2016). https://doi.org/10.5194/isprs-archives-XLII-2-W2-107-2016 [CrossRef] [Google Scholar]
- N. Haala, M. Cramer, M. Rothermel, QUALITY OF 3D POINT CLOUDS FROM HIGHLY OVERLAPPING UAV IMAGERY. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-1/W2, 183–188 (2013). https://doi.org/10.5194/isprsarchives-XL-1-W2-183-2013 [Google Scholar]
- T. Rosnell, E. Honkavaara, Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera. Sensors. 12, 453–480 (2012). https://doi.org/10.3390/s120100453 [CrossRef] [Google Scholar]
- B.U. Meinen, D.T. Robinson, Streambank topography: an accuracy assessment of UAV-based and traditional 3D reconstructions. Int. J. Remote Sens. 41, 1–18 (2020). https://doi.org/10.1080/01431161.2019.1597294 [CrossRef] [Google Scholar]
- E. Ferrer-González, F. Agüera-Vega, F. Carvajal-Ramírez, P. Martínez-Carricondo, UAV Photogrammetry Accuracy Assessment for Corridor Mapping Based on the Number and Distribution of Ground Control Points. Remote Sens. 12, 2447 (2020). https://doi.org/10.3390/rs12152447 [CrossRef] [Google Scholar]
- P. Martínez-Carricondo, F. Mesas-Carrascosa, A. García-Ferrer, F. Agüera-Vega, F. Carvajal-Ramírez, F. Pérez Porras, Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinformation. 72, (2018). https://doi.org/10.1016/j.jag.2018.05.015 [Google Scholar]
- E. Sanz-Ablanedo, J.H. Chandler, J.R. Rodríguez-Pérez, C. Ordóñez, Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sens. 10, 1606 (2018). https://doi.org/10.3390/rs10101606 [CrossRef] [Google Scholar]
- S. Coveney, K. Roberts, Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling. Int. J. Remote Sens. 38, 3159–3180 (2017). https://doi.org/10.1080/01431161.2017.1292074 [CrossRef] [Google Scholar]
- S. Harwin, A. Lucieer, Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 4, 1573–1599 (2012). https://doi.org/10.3390/rs4061573 [CrossRef] [Google Scholar]
- N. Anders, J. Valente, R. Masselink, S. Keesstra, Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones. 3, 61 (2019). https://doi.org/10.3390/drones3030061 [CrossRef] [Google Scholar]
- M. Dubbini, L. Curzio, A. Campedelli, Digital elevation models from unmanned aerial vehicle surveys for archaeological interpretation of terrain anomalies: Case study of the Roman castrum of Burnum (Croatia). J. Archaeol. Sci. Rep. 8, 121–134 (2016). https://doi.org/10.1016/j.jasrep.2016.05.054 [Google Scholar]
- A. Salach, K. Bakuła, M. Pilarska-Mazurek, W. Ostrowski, K Górski, Z. Kurczyński, Accuracy Assessment of Point Clouds from LiDAR and Dense Image Matching Acquired Using the UAV Platform for DTM Creation. ISPRS Int. J. Geo-Inf. 7, 342 (2018). https://doi.org/10.3390/ijgi7090342 [CrossRef] [Google Scholar]
- M. Howland, A. Tamberino, I. Liritzis, T. Levy, Digital Deforestation: Comparing Automated Approaches to the Production of Digital Terrain Models (DTMs) in Agisoft Metashape. Quaternary. 5, 5 (2022). https://doi.org/10.3390/quat5010005 [CrossRef] [Google Scholar]
- Y. Egels, M. Kasser, Digital Photogrammetry. CRC Press, London (2001) [CrossRef] [Google Scholar]
- O. Mures, A. Jaspe-Villanueva, E. Padrón, J. Rabuñal, Virtual Reality and Point-Based Rendering in Architecture and Heritage. In: Virtual and Augmented Reality: Concepts, Methodologies, Tools, and Applications. pp. 549–565 (2016) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.