Open Access
Issue
E3S Web Conf.
Volume 608, 2025
EU-CONEXUS EENVIRO Research Conference - The 9th Conference of the Sustainable Solutions for Energy and Environment (EENVIRO 2024)
Article Number 01007
Number of page(s) 9
Section Energy
DOI https://doi.org/10.1051/e3sconf/202560801007
Published online 22 January 2025
  1. B. Rodríguez-Soria, J. Domínguez-Hernández, J. M. Pérez-Bella, and J. J. Del Coz-Díaz, “Review of international regulations governing the thermal insulation requirements of residential buildings and the harmonization of envelope energy loss,” Renewable & Sustainable Energy Reviews, vol. 34, pp. 78–90, Jun. 2014, doi: 10.1016/j.rser.2014.03.009. [CrossRef] [Google Scholar]
  2. C. Giraldo-Soto, A. Erkoreka, L. Mora, I. Uriarte, and L. Del Portillo, “Monitoring System Analysis for Evaluating a Building’s Envelope Energy Performance through Estimation of Its Heat Loss Coefficient,” Sensors, vol. 18, no. 7, p. 2360, Jul. 2018, doi: 10.3390/s18072360. [CrossRef] [PubMed] [Google Scholar]
  3. European Commission. Directive 2024/1275/EU of the European Parliament and of the Council of 24 April 2024 on the energy performance of buildings. Official Journal, Document 32024L1275, 24/4/2024. Strasbourg; 2024 [Google Scholar]
  4. J. Ortiz-Sanz, M. Gil-Docampo, M. Arza-García, and I. Cañas-Guerrero, “IR Thermography from UAVs to Monitor Thermal Anomalies in the Envelopes of Traditional Wine Cellars: Field Test,” Remote Sensing, vol. 11, no. 12, p. 1424, Jun. 2019, doi: 10.3390/rs11121424. [CrossRef] [Google Scholar]
  5. J. J. M. Campos, D. A. García, F. R. Delgado, and D. M. García, “Threshold values for energy loss in building façades using infrared thermography,” in Springer eBooks, 2017, pp. 427-437. doi: 10.1007/978-3-319-51442-0_35. [Google Scholar]
  6. T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using YOLO: challenges, architectural successors, datasets and applications,” Multimedia Tools and Applications, vol. 82, pp. 9243–9275, Aug. 2022, doi: 10.1007/s11042-022-13644-y [Google Scholar]
  7. J. Wang et al., “Machine vision for natural gas methane emissions detection using an infrared camera,” Applied Energy, vol. 257, p. 113998, Jan. 2020, doi: 10.1016/j.apenergy.2019.113998 [CrossRef] [Google Scholar]
  8. R. Baumann, Jan-Friso Evers-Senne, and M. Strand, “Classification of 3D structures based on an object detection for facade elements in multiple views during the reconstruction process,” May 2019, doi: 10.1109/icphys.2019.8780181 [Google Scholar]
  9. J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS,” Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680–1716, Dec. 2023, doi: 10.3390/make5040083 [CrossRef] [Google Scholar]
  10. D. Anguelov et al., “Google Street View: Capturing the World at Street Level,” in Computer, vol. 43, no. 6, pp. 32-38, June 2010, doi: 10.1109/MC.2010.170. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.