Open Access
Issue
E3S Web Conf.
Volume 608, 2025
EU-CONEXUS EENVIRO Research Conference - The 9th Conference of the Sustainable Solutions for Energy and Environment (EENVIRO 2024)
Article Number 02001
Number of page(s) 8
Section Mechanics
DOI https://doi.org/10.1051/e3sconf/202560802001
Published online 22 January 2025
  1. S. Elliott and J. Brown, Pulmonology, Lecturio. https://app.lecturio.eom/#/course/c/7594 [Google Scholar]
  2. C. Kleinstreuer and Z. Zhang, Airflow and particle transport in the human respiratory system, Annu Rev Fluid Mech, 42, (2010). https://doi.org/10.1146/annurev-fluid-121108-145453 [Google Scholar]
  3. J. Choi, M. H. Tawhai, E. A. Hoffman, and C. L. Lin, On intra- and intersubject variabilities of airflow in the human lungs, Physics of Fluids, 21, 10, (2009). https://doi.org/10.1063/1.3247170 [CrossRef] [Google Scholar]
  4. M. M. Norton, R. J. Robinson, and S. J. Weinstein, Model of ciliary clearance and the role of mucus rheology, Phys Rev E Stat Nonlin Soft Matter Phys, 83, 1, (2011). https://doi.org/10.1103/PhysRevE.83.011921 [Google Scholar]
  5. X. R. Matthew Markovetz et al., Endotracheal tube mucus as a source of airway mucus for rheological study, Am J Physiol Lung Cell Mol Physiol, 317, (2019). [Google Scholar]
  6. B. K. Rubin, Mucus and Mucins, Otolaryngologic Cl. of N. America 43, 1 (2010). https://doi.org/10.1016/j.otc.2009.11.002 [CrossRef] [Google Scholar]
  7. R. Bansil and B. S. Turner, The biology of mucus: Composition, synthesis and organization, Ad Drug Delivery Rev, 124, (2018). https://doi.org/10.1016/j.addr.2017.09.023 [Google Scholar]
  8. B. K. Rubin, Mucus structure and properties in cystic fibrosis, Paediatr Respir Rev, 8, 1, (2007). https://doi.org/10.1016/j.prrv.2007.02.004 [CrossRef] [Google Scholar]
  9. R. Hamed, D. M. Schenck, and J. Fiegel, Surface rheological properties alter aerosol formation from mucus mimetic surfaces, Soft Matter, 16, 33, (2020). https://doi.org/10.1039/d0sm01232g [Google Scholar]
  10. R. Hamed and J. Fiegel, Synthetic tracheal mucus with native rheological and surface tension properties, J Biomed Mater Res A., 102, 6, (2014). https://doi.org/10.1002/jbm.a.34851 [Google Scholar]
  11. L. Frejo and D. A. Grande, 3D-bioprinted tracheal reconstruction: an overview, Bioelectron Med, 5, 1, (2019). https://doi.org/10.1186/s42234-019-0031-1 [CrossRef] [PubMed] [Google Scholar]
  12. S. Haykal, M. Salna, T. K. Waddell, and S. O. Hofer, Advances in tracheal reconstruction, (2014). https://doi.org/10.1097/gox.0000000000000097 [Google Scholar]
  13. R. L. Walenga, P. W. Longest, and G. Sundaresan, Creation of an in vitro biomechanical model of the trachea using rapid prototyping, J Biomech, 47, 8, (2014). https://doi.org/10.1016/j.jbiomech.2014.03.018 [Google Scholar]
  14. D. K. Walters, G. W. Burgreen, D. M. Lavallee, D. S. Thompson, and R. L. Hester, Efficient, physiologically realistic lung airflow simulations IEEE Trans Biomed Eng, 58, 10, (2011). https://doi.org/10.1109/TBME.2011.2161868 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.