Open Access
Issue
E3S Web Conf.
Volume 608, 2025
EU-CONEXUS EENVIRO Research Conference - The 9th Conference of the Sustainable Solutions for Energy and Environment (EENVIRO 2024)
Article Number 02004
Number of page(s) 18
Section Mechanics
DOI https://doi.org/10.1051/e3sconf/202560802004
Published online 22 January 2025
  1. Generaldirektion Energie und Verkehr, Ed., European energy and transport trends to 2030: Includes a CD-ROM with detailed results and supporting documents. Luxembourg: Office for Official Publ. of the E.C., 2003. Accessed: Jul. 06, 2024. [Online]. Available: https://energy.ec.europa.eu/system/files/2014-10/trends_to_2030_0.pdf [Google Scholar]
  2. “082_BRIEF_The-revised-EPBD—decrypted_Final.pdf.” Accessed: Jul. 06, 2024. [Online]. Available: https://www.bpie.eu/wp-content/uploads/2024/04/082 BRIEF The-revised-EPBD-%E2%80%93-decrypted Final.pdf [Google Scholar]
  3. I.-R. Vizitiu-Baciu, D. Isopescu, M. L. Lupu, S. Maxineasa, L. Pruna, and S. Dan, “Ventilated façade solutions,” IOP Conference Series: Materials Science and Engineering, vol. 1242, p. 012002, Apr. 2022, doi:10.1088/1757-899X/1242/1/012002. Accessed: Jul. 06, 2024. [Online]. Available: https://www.researchgate.net/publication/360508896_Ventilated_facade_solutions [CrossRef] [Google Scholar]
  4. D. Dimitrijevic Jovanovic, M. Vasov, A. Momcilovic, P. Živković, and D. Kostadinović, “Ventilated Green Facades as A Passive Design Strategy,” pp. 70–84, Mar. 2022. Accessed: Jul. 06, 2024. [Online]. Available: https://www.researchgate.net/publication/359438556_Ventilated_Green_Facades_as_A_Passive_Design_Strategy [Google Scholar]
  5. G. Toplicic-Curcic, D. Grdic, N. Ristic, and Z. Grdić, “Ceramic facade cladding as an element of sustainable development,” Facta universitatis - series: Architecture and Civil Engineering, vol. 13, pp. 219–231, Jan. 2015, doi:10.2298/FUACE1503219T. Accessed: Jul. 06, 2024. [Online]. Available: https://www.researchgate.net/publication/298731352 Ceramic_facade_cladding_as_an_element_of_sustainable_development [CrossRef] [Google Scholar]
  6. Schabowicz, K., & Szymków, M. (2016). Ventilated façade with fiber cement boards. Building Materials, 524(4), 112–114. DOI:10.15199/33.2016.04.29. Available: https://science.materialybudowlane.info.pl/1461-2. [Google Scholar]
  7. C. Alonso, I. Oteiza, J. García-Navarro, and F. Martín-Consuegra, “Energy consumption to cool and heat experimental modules for the energy refurbishment of façades. Three case studies in Madrid,” Energy and Buildings, vol. 126, pp. 252–262, Aug. 2016, doi:10.1016/j.enbuild.2016.04.034. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0378778816302900 [CrossRef] [Google Scholar]
  8. E. Guillaume, T. Fateh, R. Schillinger, R. Chiva, S. Ukleja, and R. Weghorst, “Intermediate-Scale Tests Of Ventilated Facades With Aluminium-Composite Claddings,” Journal of Physics: Conference Series, vol. 1107, p. 032007, Nov. 2018, doi:10.1088/1742-6596/1107/3/032007. Accessed: Jul. 08, 2024. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1107/3/032007 [CrossRef] [Google Scholar]
  9. R. Gallego-Blázquez and M. S. Camino-Olea, “Evolution of the natural stone facade cladding system,” AIP Conference Proceedings, vol. 2928, no. 1, p. 020014, Sep. 2023, doi:10.1063/5.0170888. Accessed: Jul. 08, 2024. [Online]. Available: https://www.researchgate.net/publication/374248318_Evolution_of_the_natural_stone_facade_cladding_system [CrossRef] [Google Scholar]
  10. J. Ivanovic-Sekularac, N. Šekularac, and J. C. Tovarovic, “Wood as element of façade cladding in modern architecture,” vol. 7, pp. 1304–1310, Jan. 2012. Accessed: Jul. 08, 2024. [Online]. Available: https://mdpi-res.com/books/book/6622/Energy_in_Construction_and_Building_Materials.pdf?filena me=Energy_in_Construction_and_Building_Materials.pdf [Google Scholar]
  11. G. Diarce et al., “Ventilated active façades with PCM,” Applied Energy, vol. 109, pp. 530–537, Sep. 2013, doi:10.1016/j.apenergy.2013.01.032. Accessed: Jul. 08, 2024. [Online]. Available: https://www.researchgate.net/publication/337472291_Energy_rehabilitation_of_buildings_through_phase_change_materials_and_ceramic_ventilated_facades [CrossRef] [Google Scholar]
  12. Amaral, C., Gomez, F., Moreira, M., Silva, T., & Vicente, R. (2023). Thermal performance of multifunctional facade solution containing phase change materials: Experimental and numerical analysis. Polymers, 15(13), 2971. [Online]. Available: https://www.mdpi.com/2073-4360/15/13/2971. Accessed: Jul. 08, 2024. [Online]. Available: https://www.mdpi.com/2073-4360/15/13/2971 [CrossRef] [PubMed] [Google Scholar]
  13. S. Soudian and U. Berardi, “Experimental performance evaluation of a climate-responsive ventilated building façade,” Journal of Building Engineering, vol. 61, p. 105233, Dec. 2022, doi:10.1016/j.jobe.2022.105233. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S2352710222012396 [CrossRef] [Google Scholar]
  14. H. Zhan, N. Mahyuddin, R. Sulaiman, and F. Khayatian, “Phase change material (PCM) integrations into buildings in hot climates with simulation access for energy performance and thermal comfort: A review,” Construction and Building Materials, vol. 397, p. 132312, Sep. 2023, doi:10.1016/j.conbuildmat.2023.132312. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0950061823020287 [CrossRef] [Google Scholar]
  15. I. Hayatina, A. Auckaili, and M. Farid, “Review on the Life Cycle Assessment of Thermal Energy Storage Used in Building Applications,” Energies, vol. 16, no. 3, Art. no. 3, Jan. 2023, doi:10.3390/en16031170. Accessed: Jul. 08, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/16/3/1170 [PubMed] [Google Scholar]
  16. F. L. Rashid, M. A. Al-Obaidi, A. Dulaimi, D. M. N. Mahmood, and K. Sopian, “A Review of Recent Improvements, Developments, and Effects of Using Phase-Change Materials in Buildings to Store Thermal Energy,” Designs, vol. 7, no. 4, Art. no. 4, Aug. 2023, doi:10.3390/designs7040090. Accessed: Jul. 08, 2024. [Online]. Available: https://www.mdpi.com/2411-9660/7/4/90 [Google Scholar]
  17. Md. H. Zahir et al., “Challenges of the application of PCMs to achieve zero energy buildings under hot weather conditions: A review,” Journal of Energy Storage, vol. 64, p. 107156, Aug. 2023, doi:10.1016/j.est.2023.107156. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S2352152X23005534 [CrossRef] [Google Scholar]
  18. E. Oró, A. de Gracia, A. Castell, M. M. Farid, and L. F. Cabeza, “Review on phase change materials (PCMs) for cold thermal energy storage applications,” Applied Energy, vol. 99, pp. 513–533, Nov. 2012, doi:10.1016/j.apenergy.2012.03.058. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0306261912002784 [CrossRef] [Google Scholar]
  19. C. Croitoru, F. Bode, R. Calota, C. Berville, and M. Georgescu, “Harnessing Nanomaterials for Enhanced Energy Efficiency in Transpired Solar Collectors: A Review of Their Integration in Phase-Change Materials,” Energies, vol. 17, no. 5, Art. no. 5, Jan. 2024, doi:10.3390/en17051239. Accessed: Jul. 08, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/17/5/1239 [CrossRef] [Google Scholar]
  20. A. Sarcinella, J. L. B. de Aguiar, and M. Frigione, “Use of sustainable Phase Change Material (PCM) in mortars for building energy efficiency,” J. Phys.: Conf. Ser., vol. 2385, no. 1, p. 012009, Dec. 2022, doi:10.1088/1742-6596/2385/1/012009. Accessed: Jul. 08, 2024. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/2385/1/012009 [CrossRef] [Google Scholar]
  21. B. Jelle and S. E. Kalnæs, “Phase Change Materials for Application in EnergyEfficient Buildings,” in Cost-Effective Energy Efficient Building Retrofitting: Materials, Technologies, Optimization and Case Studies, 2017, pp. 57–118. doi:10.1016/B978-0-08-101128-7.00003-4. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/B9780081011287000034 [CrossRef] [Google Scholar]
  22. D. C. Schwebel and D. Swart, “Preventing Paraffin-Related Injury,” J Inj Violence Res, vol. 1, no. 1, pp. 3–5, Jul. 2009, doi:10.5249/jivr.v1i1.1. Accessed: Jul. 08, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134901/ [CrossRef] [PubMed] [Google Scholar]
  23. Y. Zhang, B. Tang, L. Wang, R. Lu, D. Zhao, and S. Zhang, “Novel hybrid formstable polyether phase change materials with good fire resistance,” Energy Storage Materials, vol. 6, pp. 46–52, Jan. 2017, doi:10.1016/j.ensm.2016.10.001. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S2405829716301891 [CrossRef] [Google Scholar]
  24. M. McLaggan, R. Hadden, and M. Gillie, “Fire Performance of Phase Change Material Enhanced Plasterboard,” Fire Technology, vol. 54, Sep. 2017, doi:10.1007/s10694-017-0675-x. Accessed: Jul. 08, 2024. [Online]. Available: https://www.researchgate.net/publication/319866002_Fire_Performance_of_Phase_Change_Material_Enhanced_Plasterboard [Google Scholar]
  25. L. Xu, J. Wang, and R. Yang, “A new flame retardance strategy for shape stabilized phase change materials by surface coating,” Solar Energy Materials and Solar Cells, vol. 170, pp. 87–94, Oct. 2017, doi:10.1016/j.solmat.2017.05.037. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0927024817302489 [CrossRef] [Google Scholar]
  26. X. Du, S. Wang, Z. Du, C. Xu, and H. Wang, “Preparation and characterization of flame-retardant nanoencapsulated phase change materials with poly(methylmethacrylate) shells for thermal energy storage,” Journal of Materials Chemistry A., vol. 6, Aug. 2018, doi:10.1039/C8TA07086E. Accessed: Jul. 08, 2024. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta07086e [Google Scholar]
  27. ISO 1716:2018 - Reaction to fire tests for products [Google Scholar]
  28. M. S. Guney and Y. Tepe, “Classification and assessment of energy storage systems,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 1187–1197, Aug. 2017, doi:10.1016/j.rser.2016.11.102. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1364032116308218 [CrossRef] [Google Scholar]
  29. A. Dahash, F. Ochs, M. B. Janetti, and W. Streicher, “Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems,” Applied Energy, vol. 239, pp. 296–315, Apr. 2019, doi:10.1016/j.apenergy.2019.01.189. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0306261919301837 [CrossRef] [Google Scholar]
  30. G. Srinivasan, D. K. Rabha, and P. Muthukumar, “A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products,” Solar Energy, vol. 229, pp. 22–38, Nov. 2021, doi:10.1016/j.solener.2021.07.075. Accessed: Jul. 08, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038092X21006526 [CrossRef] [Google Scholar]
  31. D. Supple, “Units & Conversions Fact Sheet”. Accessed: Jul. 08, 2024. [Online]. Available: https://easypdfs.cloud/downloads/4879685-energy-conversions-answer-sheet [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.