Open Access
Issue |
E3S Web Conf.
Volume 608, 2025
EU-CONEXUS EENVIRO Research Conference - The 9th Conference of the Sustainable Solutions for Energy and Environment (EENVIRO 2024)
|
|
---|---|---|
Article Number | 05027 | |
Number of page(s) | 19 | |
Section | Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202560805027 | |
Published online | 22 January 2025 |
- A. Barbulescu, C.S. Dumitriu, Assessing the water quality by statistical methods, Water 13 (8), 1026 (2021). https://doi.org/10.3390/w13081026 [Google Scholar]
- C.H.M. Ketels, O. Memedovic, From clusters to cluster-based economic development, Int. J. Tech. Learn. Innov. Develop. (IJTLID) 1, 3 (2008). [Google Scholar]
- Y. Nazzal, A. Bărbulescu, M. Sharma, F. Howari, M. Naseem, Evaluating the contamination by the indoor dust in Dubai, Toxics 11 (11), 933 (2023). [Google Scholar]
- Y.H. Nazzal, A. Bărbulescu, F. Howari, A.A. Al-Taani, J. Iqbal, C.M. Xavier, M. Sharma, C.S. Dumitriu, Assessment of metals concentrations in soils of Abu Dhabi Emirate using pollution indices and multivariate statistics, Toxics 9 (5), 95 (2021). [Google Scholar]
- H. Rocha, M. Kunc, D.B. Audretsch, Clusters, economic performance, and social cohesion: a system dynamics approach. Reg. Stud. 54 (8), 1098-1111 (2019). [Google Scholar]
- S. Vandhana, J. Anuradha, Environmental air pollution clustering using enhanced ensemble clustering methodology. Environ. Sci. Pollut. Res. 28, 40746-40755 (2021). [CrossRef] [PubMed] [Google Scholar]
- L. Zhang, G. Yang, Cluster analysis of PM2.5 pollution in China using the frequent itemset clustering approach, Environ. Resear. 204, 112009 (2022). [Google Scholar]
- G. Lakshmi, K.P. Sudheer, Parameterization in hydrological models through clustering of the simulation time period and multi-objective optimization based calibration, Environ. Modell. Softw. 138 104981 (2021). [Google Scholar]
- A. Wunsch, T. Liesch, S. Broda Feature-based Groundwater Hydrograph Clustering Using Unsupervised Self-Organizing Map-Ensembles. Water Resour. Manage. 36, 39-54 (2022). [Google Scholar]
- M. Ahmed, R. Seraj, S.M.S. Islam, The K-means algorithm: A comprehensive survey and performance evaluation. Electronics 9, 1295 (2020). https://doi.org/10.3390/electronics9081295. [Google Scholar]
- Y. Chen, L. Zhou, S. Pei, Z. Yu, J. Du, KNN-BLOCK DBSCAN: Fast clustering for large-scale data. IEEE Trans. Syst. Man Cybern. Syst. 50, 4462-4471 (2020). https://doi.org/10.1109/TSMC.2019.2956527. [Google Scholar]
- N.P. Sutramiani, I.M.T. Arthana, P.F.A. Lampung, S. Aurelia, M. Fauzi, I.W.A.S. Darma, The performance comparison of DBSCAN and K-means clustering for MSMEs grouping based on asset value and turnover. J. Inf. Syst. Eng. Bus. Intell. 10, 13-24 (2024). https://doi.Org/10.20473/jisebi.10.1.13-24. [Google Scholar]
- V. Mathur, J. Mehta, S. Singh, HCA-DBSCAN: HyperCube Accelerated DensityBased Spatial Clustering for Applications with Noise. arXiv preprint (2019). https://doi.org/10.48550/arXiv.1912.00323. [Google Scholar]
- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-84858-7. [Google Scholar]
- D.M. Micu, V.A. Amihaesei, N. Milian, S. Cheval, Recent changes in temperature and precipitation indices in the Southern Carpathians, Romania (1961-2018). Theor. Appl. Climatol. 144, 691-710 (2021). https://doi.org/10.1007/s00704-021-03560-w [Google Scholar]
- I. Vorovencii, Assessing and monitoring the risk of desertification in Dobrogea, Romania, using Landsat data and decision tree classifier. Environ. Monit. Assess. 187, 204 (2015). https://doi.org/10. 1007/s10661-015-4428-3. [Google Scholar]
- G. Caraivan, I. Dinu, C. Fulga, D. Popescu, Climate Change and the Hydrogeologic Frame- work in Constanta City, South Dobrogea, Romania. NATO Sci. Peace Sec. Ser. C Environ. Secur. 3, 259-265 (2011). https://doi.org/10.1007/ 978-94-007-1143-3_28. [Google Scholar]
- A. Kassambara, Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning, (STHDA, 2017). [Google Scholar]
- J.B. MacQueen, Some Methods for classification and Analysis of Multivariate observations, in Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1, 281-297 (1967). [Google Scholar]
- J.A. Hartigan, M.A. Wong, Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. C Appl. Stat. 28, 100-108 (1979). https://doi.org/10. 2307/2346830. [Google Scholar]
- M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, O.R., USA, August 2-4 (AAAI Press, 1996), 226–231. [Google Scholar]
- M. Hahsler, K. Hornik, Cluster analysis: Basic concepts and algorithms, J. Mach. Learn. Res. 8, 275-300 (2007). [Google Scholar]
- B. Hopkins, J.G. Skellam, A new method for determining the type of distribution of plant individuals, Ann. Bot. 18 (2), 213-227 (1954). [CrossRef] [Google Scholar]
- A. Banerjee, R.N. Dave, Validating clusters using the Hopkins statistic, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542), Budapest, Hungary, 2004, vol.1, 149–153, doi: 0.1109/FUZZY.2004.1375706. [Google Scholar]
- J.C. Bezdek, R.J. Hathaway, J.M. Huband, N.R. Pal, Visual Assessment of Clustering Tendency (VAT), in Proceedings of the International Joint Conference on Neural Networks, Honolulu, H.I., USA, May 12–17 (2002), 2225-2230. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.