Open Access
Issue
E3S Web Conf.
Volume 609, 2025
The 7th International Conference on Multidiscipline Approaches for Sustainable Rural Development (ICMA SURE 2024)
Article Number 01002
Number of page(s) 7
Section Earth and Environmental Sciences
DOI https://doi.org/10.1051/e3sconf/202560901002
Published online 24 January 2025
  1. S. Shabbir, M. Faheem, N. Ali, P. G. Kerr, and Y. Wu, “Periphyton biofilms: A novel and natural biological system for the effective removal of sulfonated azo dye methyl orange by synergistic mechanism,” Chemosphere, vol. 167, pp. 236–246, 2017, doi: 10.1016/j.chemosphere.2016.10.002. [CrossRef] [PubMed] [Google Scholar]
  2. A. A. Gami, M. Y. Shukor, K. A. Khalil, F. A. Dahalan, A. Khalid, and S. A. Ahmad, “Phenol and its toxicity,” J. Environ. Microbiol. Toxicol., vol. 2, no. 1, pp. 11–23, 2014, doi: 10.54987/jemat.v2i1.89. [CrossRef] [Google Scholar]
  3. Y. Chae, L. Kim, D. Kim, R. Cui, J. Lee, and Y. J. An, “Deriving hazardous concentrations of phenol in soil ecosystems using a species sensitivity distribution approach,” J. Hazard. Mater., vol. 399, no. May, p. 123036, 2020, doi: 10.1016/j.jhazmat.2020.123036. [CrossRef] [Google Scholar]
  4. K. A. Mohamad Said, A. F. Ismail, Z. Abdul Karim, M. S. Abdullah, and A. Hafeez, “A review of technologies for the phenolic compounds recovery and phenol removal from wastewater,” Process Saf. Environ. Prot., vol. 151, pp. 257–289, 2021, doi: 10.1016/j.psep.2021.05.015. [CrossRef] [Google Scholar]
  5. S. G. Mora-Ravelo, A. Alarcón, M. Rocandio-Rodríguez, and V. Vanoye-Eligio, “Bioremediation of wastewater for reutilization in agricultural systems: A review,” Appl. Ecol. Environ. Res., vol. 15, no. 1, pp. 33–50, 2017, doi: 10.15666/aeer/1501_033050. [CrossRef] [Google Scholar]
  6. S. Tripathi, P. Sharma, D. Purchase, and R. Chandra, “Distillery wastewater detoxification and management through phytoremediation employing Ricinus communis L.,” Bioresour. Technol., vol. 333, no. March, p. 125192, 2021, doi: 10.1016/j.biortech.2021.125192. [CrossRef] [Google Scholar]
  7. A. S. Ayangbenro and O. O. Babalola, “A new strategy for heavy metal polluted environments: A review of microbial biosorbents,” Int. J. Environ. Res. Public Health, vol. 14, no. 1, 2017, doi: 10.3390/ijerph14010094. [CrossRef] [Google Scholar]
  8. S. E. Korcan, İ. H. Ciğerci, and M. Konuk, “White-Rot Fungi in Bioremediation,” Soil Biology, vol.32, pp. 371–390, 2013, doi: 10.1007/978-3-642-33811-3_16. [CrossRef] [Google Scholar]
  9. F. M. Rosa et al., “Filamentous Fungi as Bioremediation Agents of Industrial Effluents: A Systematic Review,” Fermentation, vol. 10, no. 3, 2024, doi: 10.3390/fermentation10030143. [Google Scholar]
  10. S. Rodríguez-Couto, “Industrial and environmental applications of white-rot fungi,” Mycosphere, vol. 8, no. 3, pp. 456–466, 2017, doi: 10.5943/mycosphere/8/3/7. [CrossRef] [Google Scholar]
  11. S. Ghosh et al., “Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons,” Front. Bioeng. Biotechnol., vol. 11, no. February, pp. 1–20, 2023, doi: 10.3389/fbioe.2023.1106973. [CrossRef] [Google Scholar]
  12. C. Pezzella et al., “Exploitation of Trametes versicolor for bioremediation of endocrine disrupting chemicals in bioreactors,” PLoS One, vol. 12, no. 6, pp. 1–12, 2017, doi: 10.1371/journal.pone.0178758. [Google Scholar]
  13. D. M. A. Khalil, M. S. Massoud, S. A. El-Zayat, and M. A. El-Sayed, “Bioremoval capacity of phenol by some selected endophytic fungi isolated from hibiscus sabdariffa and batch biodegradation of phenol in paper and pulp effluents,” Iran. J. Microbiol., vol. 13, no. 3, pp. 407–417, 2021, doi: 10.18502/ijm.v13i3.6404. [Google Scholar]
  14. M. Hofrichter, F. Bublitz, and W. Fritsche, “Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2,” J. Basic Microbiol., vol. 34, no. 3, pp. 163–172, 1994, doi: 10.1002/jobm.3620340306. [CrossRef] [PubMed] [Google Scholar]
  15. J. Marr, S. Kremer, O. Sterner, and H. Anke, “Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117,” Biodegradation, vol. 7, no. 2, pp. 165–171, 1996, doi: 10.1007/BF00114628. [CrossRef] [PubMed] [Google Scholar]
  16. V. L. Santos and V. R. Linardi, “Biodegradation of phenol by a filamentous fungi isolated from industrial effluents - Identification and degradation potential,” Process Biochem., vol. 39, no. 8, pp. 1001–1006, 2004, doi: 10.1016/S0032-9592(03)00201-2. [CrossRef] [Google Scholar]
  17. A. R-pollowy and A. R. Bleasdale-pollowy, “Preventing Emissions of Volatile Organic Compounds from Water Bodies Using Buoyant Photocatalysts by Preventing Emissions of Volatile Organic Compounds Using Buoyant Photocatalysts,” 2023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.