Open Access
Issue
E3S Web Conf.
Volume 609, 2025
The 7th International Conference on Multidiscipline Approaches for Sustainable Rural Development (ICMA SURE 2024)
Article Number 02002
Number of page(s) 6
Section Life Sciences
DOI https://doi.org/10.1051/e3sconf/202560902002
Published online 24 January 2025
  1. International Diabetes Federation, “IDF Diabetes Atlas 2021,” IDF DIABETES ATLAS 10th. Accessed: Oct. 11, 2024. [Online]. Available: https://diabetesatlas.org/atlas/tenth-edition/ [Google Scholar]
  2. V. Naresh and N. Lee, “A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors,” Sensors, vol. 21, no. 4, p. 1109, 2021. [CrossRef] [PubMed] [Google Scholar]
  3. M. S. Sumitha and T. S. Xavier, “Recent advances in electrochemical biosensors – A brief review,” Hybrid Advances, vol. 2, p. 100023, Apr. 2023, doi: 10.1016/J.HYBADV.2023.100023. [CrossRef] [Google Scholar]
  4. J. Wang, Analytical Electrochemistry, Third Edition. 2006. doi: 10.1002/0471790303. [Google Scholar]
  5. Sh. Amerkhanova, R. Shlyapov, A. Uali, and D. Belgibaeva, “Prospects of application of iron-containing carbon-paste electrode in electrochemical analysis,” Mater Today Proc, vol. 49, pp. 2532–2536, 2022, doi: https://doi.org/10.1016/j.matpr.2021.05.437. [CrossRef] [Google Scholar]
  6. A. Fatoni, W. Widanarto, M. D. Anggraeni, and D. W. Dwiasi, “Glucose biosensor based on activated carbon–NiFe2O4 nanoparticles composite modified carbon paste electrode,” Results Chem, vol. 4, p. 100433, 2022. [CrossRef] [Google Scholar]
  7. J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Órfão, “Modification of the surface chemistry of activated carbons,” Carbon N Y, 1999, doi: 10.1016/S0008-6223(98)00333-9. [Google Scholar]
  8. T. Adinaveen, J. J. Vijaya, and L. J. Kennedy, “Comparative Study of Electrical Conductivity on Activated Carbons Prepared from Various Cellulose Materials,” Arab J Sci Eng, vol. 41, no. 1, pp. 55–65, 2016, doi: 10.1007/s13369-014-1516-6. [CrossRef] [Google Scholar]
  9. O. Colak, H. Arslan, H. Zengin, and G. Zengin, “Amperometric detection of glucose by polyaniline-activated carbon composite carbon paste electrode,” Int J Electrochem Sci, vol. 7, no. 8, pp. 6988–6997, 2012. [CrossRef] [Google Scholar]
  10. N. Afiqah Anuwar, P. Faizura, and M. Khamaruddin, “Optimization of Chemical Activation Conditions for Activated Carbon From Coconut Shell Using Response Surface Methodology (RSM) and Its Ability to Adsorb CO₂,” pp. 234–248, Dec. 2020, doi: 10.2991/AER.K.201229.032. [Google Scholar]
  11. T. T. Nguyen et al., “Enhanced capacitive deionization performance of activated carbon derived from coconut shell electrodes with low content carbon nanotubes–graphene synergistic hybrid additive,” Mater Lett, vol. 292, p. 129652, Jun. 2021, doi: 10.1016/J.MATLET.2021.129652. [CrossRef] [Google Scholar]
  12. L. Wang, X. Gao, L. Jin, Q. Wu, Z. Chen, and X. Lin, “Amperometric glucose biosensor based on silver nanowires and glucose oxidase,” Sens Actuators B Chem, vol. 176, pp. 9–14, 2013, doi: 10.1016/j.snb.2012.08.077. [CrossRef] [Google Scholar]
  13. S. Donmez, F. Arslan, N. Sarı, E. Hasanoğlu Özkan, and H. Arslan, “Glucose biosensor based on immobilization of glucose oxidase on a carbon paste electrode modified with microsphere-attached l-glycine,” Biotechnol Appl Biochem, vol. 64, no. 5, pp. 745–753, 2017. [CrossRef] [PubMed] [Google Scholar]
  14. T. Vigneswari and P. Raji, “Structural and magnetic properties of calcium doped nickel ferrite nanoparticles by co-precipitation method,” J Mol Struct, vol. 1127, pp. 515–521, 2017. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.