Open Access
Issue
E3S Web Conf.
Volume 609, 2025
The 7th International Conference on Multidiscipline Approaches for Sustainable Rural Development (ICMA SURE 2024)
Article Number 02004
Number of page(s) 5
Section Life Sciences
DOI https://doi.org/10.1051/e3sconf/202560902004
Published online 24 January 2025
  1. Naveena, B., & Sharma, A. Review on properties of biodegradable films for packaging applications and its advantages. International Journal of Current Microbiology and Applied Sciences, 9(5): 1428-1432, 2020. [CrossRef] [Google Scholar]
  2. Ibrahim, N. I., Shahar, F. S., Sultan, M. T. H., Shah, A. U. M., Safri, S. N. A., & Mat Yazik, M. H. Overview of biodegradable film introduction and its applications in product packaging. Coatings, 11(11), 1423, 2021. [CrossRef] [Google Scholar]
  3. Alabi, O. A., Ologbonjaye, K. I., Awosolu, O., & Alalade, O. E. Public and environmental health effects of plastic wastes disposal: a review. J Toxicol Risk Assess, 5(21), 1-13, 2019. [Google Scholar]
  4. Coppola, G., Gaudio, M.T., Lopresto, C.G., Calabro, V., Curcio, S., Chakraborty, S. Biodegradable film from renewable biomass, a facile solution for a greener environment. Earth Syst. Environ. 5, 231–251, 2021. [CrossRef] [Google Scholar]
  5. Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132: 1079–1089, 2019. [CrossRef] [Google Scholar]
  6. Massad-Ivanir, N., Sand, A., Nitzan, N., Valderama, E., Kurczewski, M., Remde, H.,& Segal, E. Scalable production of antimicrobial food packaging films containing essential oil-loaded halloysite nanotubes. Food Packaging and Shelf Life, 37: 1-10, 2023. [Google Scholar]
  7. Ribeiro-Santos, R., Andrade, M., & Sanches-Silva, A. Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science, 14, 78–84, 2017. [CrossRef] [Google Scholar]
  8. Qin, Y., Li, W., Liu, D., Yuan, M., & Li, L. Development of active packaging film made from poly (lactic acid) incorporated essential oil. Progress in Organic Coatings, 103, 76–82, 2017. [CrossRef] [Google Scholar]
  9. Aisyah, Y., Yunita, D., & Amanda, A. Antimicrobial activity of patchouli (Pogostemon cablin Benth) citronella (Cymbopogon nardus), and nutmeg (Myristica fragrans) essential oil and their mixtures against pathogenic and food spoilage microbes. In IOP Conference Series: Earth and Environmental Science, 667 (1), 2021. [Google Scholar]
  10. Yingngam, B., Kacha, W., Rungseevijitprapa, W., Sudta, P., Prasitpuriprecha, C., & Brantner, A. Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technology, 355, 372-385, 2019. [CrossRef] [Google Scholar]
  11. Mukurumbira, A. R., Shellie, R. A., Keast, R., Palombo, E. A., & Jadhav, S. R. Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control, 136, 108883, 2022. [CrossRef] [Google Scholar]
  12. Al-Hassan, A. A., M. H. Norziah. Starch-Gelatin Edible Films: Water Vapor Permeability and Mechanical Properties as Affected by Plasticizers. Journal Food Hydrocolloids 26(1), 108-117, 2012. [CrossRef] [Google Scholar]
  13. Wibowo, C., Eminawati, Haryanti, P., and Wicaksono, R. Effect of starch - based edible coating application on potato chips characteristic. Food Research, 4(December), 1905–1911, 2020. [CrossRef] [Google Scholar]
  14. Syafiq, R., Sapuan, S. M., & Zuhri, M. R. M. Antimicrobial activity, physical, mechanical and barrier properties of sugar palm based nanocellulose/starch biocomposite films incorporated with cinnamon essential oil. Journal of Materials Research and Technology, 11:144-157, 2021. [CrossRef] [Google Scholar]
  15. Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. Physical properties and stability of starch gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143, 2015. [CrossRef] [Google Scholar]
  16. Espitia, P. J. P., Du, W. X., de Jesús Avena-Bustillos, R., Soares, N. D. F. F., & McHugh, T. H. Edible films from pectin: Physical-mechanical and antimicrobial properties-A review. Food hydrocolloids, 35, 287-296, 2014. [CrossRef] [Google Scholar]
  17. Silva, K. S., Fonseca, T. M. R., Amado, L. R., & Mauro, M. A. Physicochemical and microstructural properties of whey protein isolate-based films with addition of pectin. Food packaging and shelf life, 16, 122-128, 2018. [CrossRef] [Google Scholar]
  18. Ulyarti, U., Lavlinesia, L., Surhaini, S., Siregar, N., Tomara, A., Lisani, L., & Nazarudin, N. Development of yam-starch-based biodegradable films with the addition of chitosan and clove oil. Makara Journal of Science, 25(2): 91-97, 2021. [Google Scholar]
  19. Lin, D., Zheng, Y., Wang, X., Huang, Y., Ni, L., Chen, X. & Wu, D. Study on physicochemical properties, antioxidant and antimicrobial activity of okara soluble dietary fiber/sodium carboxymethyl cellulose/thyme essential oil active edible composite films incorporated with pectin. International Journal of Biological Macromolecules, 165: 1241-1249, 2020. [CrossRef] [Google Scholar]
  20. Mahajan, K., Kumar, S., Bhat, Z. F., Naqvi, Z., Mungure, T. E., & Bekhit, A. E. D. A. Functionalization of carrageenan based edible film using Aloe vera for improved lipid oxidative and microbial stability of frozen dairy products. Food Bioscience, 43, 1-10, 2021. [Google Scholar]
  21. Riquelme, N., Herrera, M. L., & Matiacevich, S. Active films based on alginate containing lemongrass essential oil encapsulated: Effect of process and storage conditions. Food and Bioproducts Processing, 104, 94-103, 2017. [CrossRef] [Google Scholar]
  22. Müller, C. M., Laurindo, J. B., & Yamashita, F. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33(3): 605-610, 2011. [CrossRef] [Google Scholar]
  23. Scudeler, C. G. D. S., Costa, T. D. L., Cortez-Vega, W. R., Prentice, C., & Fonseca, G. G. Development and characterization of Nile tilapia (Oreochromis niloticus) protein isolate-based biopolymer films incorporated with essential oils and nanoclay. Food Packaging and Shelf Life, 25: 1-16, 2020. [Google Scholar]
  24. Nonsee, K., Supitchaya, C., & Thawien, W. Antimicrobial activity and the properties of edible hydroxypropyl methylcellulose based films incorporated with encapsulated clove (Eugenia caryophyllata Thunb.) oil. International Food Research Journal, 18(4): 1531-1541, 2011. [Google Scholar]
  25. Jaramillo, C. M., Gutiérrez, T. J., Goyanes, S., Bernal, C., & Famá, L. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate polymers, 151, 150-159, 2016. [CrossRef] [PubMed] [Google Scholar]
  26. Sarah, M., Ardiansyah, D., Misran, E., & Madinah, I. Extraction of citronella oil from lemongrass (Cymbopogon winterianus) by sequential ultrasonic and microwave-assisted hydro-distillation. Alexandria Engineering Journal, 70:569-583, 2023. [CrossRef] [Google Scholar]
  27. Evangelho, J. A., da Silva Dannenberg, G., Biduski, B., El Halal, S. L. M., Kringel, D. H., Gularte, M. A., & da Rosa Zavareze, E. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydrate polymers, 222, 1-8, 2019. [Google Scholar]
  28. Ye, S., Zhu, Z., Wen, Y., Su, C., Jiang, L., He, S., & Shao, W. Facile and green preparation of pectin/cellulose composite films with enhanced antibacterial and antioxidant behaviors. Polymers, 11(1), 1-11, 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.