Open Access
Issue
E3S Web Conf.
Volume 609, 2025
The 7th International Conference on Multidiscipline Approaches for Sustainable Rural Development (ICMA SURE 2024)
Article Number 03003
Number of page(s) 5
Section Engineering and Technology
DOI https://doi.org/10.1051/e3sconf/202560903003
Published online 24 January 2025
  1. J.E Dunn, and J. Serrin, “On the thermomechanics of interstitial working” Arch. Rational Mech. Anal., vol. 88, no. 2, pp. 95-133, 1985. [CrossRef] [Google Scholar]
  2. D.M Anderson, G.B McFadden, and A.A Wheeler, “Diffuse-interface methods in fluid mechanics”, Annu. Rev. Fluid Mech, vol. 30, no. 1, pp. 139-165,1998. [CrossRef] [Google Scholar]
  3. D Bresch, B Desjardins, and C.K Lins, “On some compressible fluid models: Korteweg, lubrication and shallow water systems”, Comm. Partial Differ. Equ, vol. 28, pp. 843-868, 2003. [CrossRef] [Google Scholar]
  4. M Kotschote, “Strong solutions for a compressible fluid model of Korteweg type” Ann. Inst. H. Poincare Anal. Non Lineaire., vol 25, pp. 679-696, 2008. [CrossRef] [Google Scholar]
  5. M Kotschote, “Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid”, J. Math. Fluid Mech., vol. 12, no. 4, pp. 473-484, 2010. [CrossRef] [Google Scholar]
  6. M Kotschote, “Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg type”, SIAM J. Math. Anal., vol. 44, pp. 74-101, 2012. [CrossRef] [Google Scholar]
  7. M Kotschote, “Existence and time-asymptotics of global strong solutions to dynamic Korteweg models”, Indiana Univ. Math. J. vol. 63, pp. 21-51, 2014. [CrossRef] [Google Scholar]
  8. H. Hattori, and D. Li, “Solutions for two dimensional systems for materials of Korteweg type”, SIAM J. Math. Anal, vol. 25, pp. 85-98, 1994. [CrossRef] [Google Scholar]
  9. H. Hattori, and D. Li, “Global solutions of a high-dimensional system for Korteweg materials”, J. Math. Anal. Appl., vol. 198, no. 1, pp. 84-97, 1996. [CrossRef] [Google Scholar]
  10. M. Murata, Y. Shibata, “The global well-posedness for the compressible fluid model of Korteweg type”, SIAM J. Math. Anal, vol. 52, no. 6, pp. 6313-6337, 2020. [CrossRef] [Google Scholar]
  11. S. Inna, S. Maryani, and H. Saito, “Half-space model problem for a compressible fluid model of Korteweg type with slip boundary condition”, in Proceeding of the Soedirman’s International Conference on Mathematics and Applied Sciences, SICOMAS 2019, Purwokerto, Indonesia, October 23-24, 2019. pp. [Google Scholar]
  12. S. Maryani, and M. Murata, “R-Bounded operator families arising from a compressible fluid model of Korteweg type with surface tension in half-space”, Complex Analysis and Operator Theory., vol.18 no. 173, pp. 1-37, October 2024. [CrossRef] [Google Scholar]
  13. H. Saito, “Compressible fluid model of Korteweg type with free boundary condition: model problem”, Funkcialaj Ekvacioj, vol. 63, no. 3, pp. 337-386, 2019. [CrossRef] [Google Scholar]
  14. A. R Adams, and J.J. Fournier, Sobolev Space. Academic Press: Amsterdam, 2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.