Open Access
Issue |
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 12 | |
Section | Energy Technology | |
DOI | https://doi.org/10.1051/e3sconf/202561001004 | |
Published online | 23 January 2025 |
- Shrestha, R. L. et al. Washnut seed-derived ultrahigh surface area nanoporous carbons as high rate performance electrode material for supercapacitors. Bull. Chem. Soc. Jpn. 94, 565–572 (2021). [CrossRef] [Google Scholar]
- Yin, Y. et al. Recent Progress and Future Directions of Biomass-Derived Hierarchical Porous Carbon : Designing, Preparation, and Supercapacitor Applications. (2023) doi:10.1021/acs.energyfuels.2c04093. [Google Scholar]
- Dhakal, G. et al. High-performance supercapacitors fabricated with activated carbon derived from lotus calyx biowaste. Renew. Energy 189, 587–600 (2022). [CrossRef] [Google Scholar]
- Lobato-Peralta, D. R. et al. Activated carbons obtained by environmentally friendly activation using solar energy for their use in neutral electrolyte supercapacitors. J. Energy Storage 52, (2022). [Google Scholar]
- Puziy, A. M., Poddubnaya, O. I., MartínezAlonso, A., Suárez-García, F. & Tascón, J. M. D. Synthetic carbons activated with phosphoric Acid I. Surface chemistry and ion binding properties. Carbon N. Y. 40, 1493–1505 (2002). [CrossRef] [Google Scholar]
- Awasthi, G. P. et al. Synthesis and characterizations of activated carbon from Wisteria sinensis seeds biomass for energy storage applications. J. Ind. Eng. Chem. 72, 265–272 (2019). [CrossRef] [Google Scholar]
- Mensah-Darkwa, K., Zequine, C., Kahol, P. K. & Gupta, R. K. Supercapacitor energy storage device using biowastes: A sustainable approach to green energy. Sustain. 11, (2019). [Google Scholar]
- González-García, P. Activated carbon from lignocellulosics precursors : A review of the synthesis methods , characterization techniques and applications. Renew. Sustain. Energy Rev. 1–22 (2017) doi:10.1016/j.rser.2017.04.117. [Google Scholar]
- Liang, K. et al. Post-modified biomass derived carbon materials for energy storage supercapacitors: a review. Sustain. Energy Fuels 7, 3541–3559 (2023). [CrossRef] [Google Scholar]
- Shrestha, R. L. et al. Nanoporous Carbon Materials Derived from Washnut Seed with Enhanced Supercapacitance. Materials (Basel). 13, 1–13 (2020). [Google Scholar]
- Pour, G. B., Fard, H. N., Aval, L. F. & Dubal, D. Recent advances in Ni-materials/carbon nanocomposites for supercapacitor electrodes. Mater. Adv. 6152–6174 (2023) doi:10.1039/d3ma00609c. [CrossRef] [Google Scholar]
- Yang, V. et al. Hierarchical porous carbon derived from jujube fruits as sustainable and ultrahigh capacitance material for advanced supercapacitors. J. Colloid Interface Sci. 579, 347–356 (2020). [CrossRef] [Google Scholar]
- Najib, S. & Erdem, E. Current progress achieved in novel materials for supercapacitor electrodes: Mini review. Nanoscale Adv. 1, 2817–2827 (2019). [CrossRef] [PubMed] [Google Scholar]
- Kayode, S. E. & González, F. J. Treatment of Biowaste for Electrodes in Energy Storage Applications: A Brief Review. J. Compos. Sci. 7, (2023). [Google Scholar]
- Anderson, B. D. & Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 6, 12195–12216 (2014). [CrossRef] [PubMed] [Google Scholar]
- Patil, S. S. et al. Hybrid Solid State Supercapacitors (HSSC’s) for High Energy & Power Density: An Overview. Eng. Sci. 12, 38–51 (2020). [Google Scholar]
- Wang, Y. et al. Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate 1–20 (2023) doi:10.1002/agt2.428. [Google Scholar]
- Yadav, N., Ritu, Promila & Hashmi, S. A. Hierarchical porous carbon derived from eucalyptus-bark as a sustainable electrode for high-performance solid-state supercapacitors. Sustain. Energy Fuels 4, 1730–1746 (2020). [CrossRef] [Google Scholar]
- Neme, I., Gonfa, G. & Masi, C. Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon 8, e11940 (2022). [CrossRef] [PubMed] [Google Scholar]
- Ciftyurek, E. et al. Performance of activated carbons synthesized from fruit dehydration biowastes for supercapacitor applications. Environ. Prog. Sustain. Energy 38, 0–2 (2019). [CrossRef] [Google Scholar]
- Adhikari, B., Aryal, B. & Bhattarai, B. R. A Comprehensive Review on the Chemical Composition and Pharmacological Activities of Acacia catechu (L.f.) Willd. J. Chem. 2021, (2021). [Google Scholar]
- Kumar, D., Thakur, C. L. & Bhardwaj, D. R. Biodiversity conservation and carbon storage of Acacia catechu willd. Dominated northern tropical dry deciduous forest ecosystems in northwestern Himalaya : Implications of different forest management regimes. 1–16 (2022) doi:10.3389/fenvs.2022.981608. [Google Scholar]
- Chen, W. et al. Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. Appl. Energy 278, 115730 (2020). [CrossRef] [Google Scholar]
- Boundzanga, H. M. et al. Contributions of hemicellulose, cellulose, and lignin to the mass and the porous characteristics of activated carbons produced from biomass residues by phosphoric acid activation. Biomass Convers. Biorefinery 12, 3081–3096 (2022). [CrossRef] [Google Scholar]
- Shrestha, D., Maensiri, S., Wongpratat, U., Lee, S. W. & Nyachhyon, A. R. Shorea robusta derived activated carbon decorated with manganese dioxide hybrid composite for improved capacitive behaviors. J. Environ. Chem. Eng. 7, 103227 (2019). [CrossRef] [Google Scholar]
- Shrestha, K. R., Kandula, S., Kim, N. H. & Lee, J. H. A spinel MnCo2O4/NG 2D/2D hybrid nanoarchitectures as advanced electrode material for high performance hybrid supercapacitors. J. Alloys Compd. 771, 810–820 (2019). [CrossRef] [Google Scholar]
- López-Díaz, D. et al. Towards understanding the Raman spectrum of graphene oxide: The effect of the chemical composition. Coatings 10, 1–12 (2020). [Google Scholar]
- Gnawali, C. L. et al. Nanoporous Activated Carbon Material from Terminalia chebula Seed for Supercapacitor Application. C-Journal Carbon Res. 9, (2023). [Google Scholar]
- Zhao, Z. et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J. Mater. Chem. A 3, 15049–15056 (2015). [CrossRef] [Google Scholar]
- Li, S. et al. Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor. Sci. Rep. 12, 1–17 (2022). [CrossRef] [Google Scholar]
- Apriwandi, A., Taer, E., Farma, R., Setiadi, R. N. & Amiruddin, E. A facile approach of micromesopores structure binder-free coin/monolith solid design activated carbon for electrode supercapacitor. J. Energy Storage 40, 102823 (2021). [CrossRef] [Google Scholar]
- Cheng, P. et al. Biomass-Derived Carbon Fiber Aerogel as a Binder-Free Electrode for High-Rate Supercapacitors. J. Phys. Chem. C 120, 2079–2086 (2016). [CrossRef] [Google Scholar]
- Ahmad, A. et al. Preparation and Characterization of Physically Activated Carbon and Its Energetic Application for All-Solid-State Supercapacitors: A Case Study. ACS Omega 8, 21653–21663 (2023). [CrossRef] [PubMed] [Google Scholar]
- Jung, S. H. et al. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density. Sci. Rep. 8, 1–8 (2018). [Google Scholar]
- Yunita, A., Farma, R., Awitdrus, A. & Apriyani, I. The effect of various electrolyte solutions on the electrochemical properties of the carbon electrodes of supercapacitor cells based on biomass waste. Mater. Today Proc. (2023) doi:10.1016/j.matpr.2023.03.102. [Google Scholar]
- Hu, S. C. et al. Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acidchemical activation for supercapacitor applications. Renew. Energy 177, 82–94 (2021). [CrossRef] [Google Scholar]
- Usha Rani, M., Nanaji, K., Rao, T. N. & Deshpande, A. S. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J. Power Sources 471, 228387 (2020). [CrossRef] [Google Scholar]
- Zhang, J., Gong, L., Sun, K., Jiang, J. & Zhang, X. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J. Solid State Electrochem. 16, 2179–2186 (2012). [CrossRef] [Google Scholar]
- Ma, G. et al. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour. Technol. 197, 137–142 (2015). [CrossRef] [Google Scholar]
- Zhou, Y. et al. Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors. Nanomaterials 12, 810 (2022). [CrossRef] [PubMed] [Google Scholar]
- Jiao, S. et al. Nano-flower-like porous carbon derived from soybean straw for efficient N-S codoped supercapacitors by coupling in-situ heteroatom doping with green activation method. Appl. Surf. Sci. 615, 156365 (2023). [CrossRef] [Google Scholar]
- Gehrke, V. et al. Facile preparation of a novel biomass-derived H3PO4 and Mn(NO3)2 activated carbon from citrus bergamia peels for highperformance supercapacitors. Mater. Today Commun. 26, (2021). [Google Scholar]
- Zhang, Y. et al. Morphology-dependent NiMoO4/carbon composites for high performance supercapacitors. Inorg. Chem. Commun. 111, (2020). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.