Open Access
Issue |
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 9 | |
Section | Food Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202561002003 | |
Published online | 23 January 2025 |
- S.K. Sharma, N. Gautam, Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species. Biomed Res. Int. 346508 (2015). https://doi.org/10.1155/2015/346508 [Google Scholar]
- E. Shang, C. Weiss, S. Post, G. Kaehler, The influence of early supplementation of parenteral nutrition on quality of life and body composition in patients with advanced cancer. JPEN. 30(3), 222 (2006). https://doi.org/10.1177/0148607106030003222 [CrossRef] [Google Scholar]
- Y.C. Dai, L.W. Zhou, B.K. Cui, Y.Q. Chen, C. Decock, Current advances in Phellinus sensu lato: medicinal species, functions, metabolites and mechanisms. Appl Microbiol Biotechnol. 87(5), 1587–1593 (2010). https://doi.org/10.1007/s00253-010-2711-3 [CrossRef] [PubMed] [Google Scholar]
- U.T. Dudekula, K. Doriya, S.K. Devarai, A critical review on submerged production of mushroom and their bioactive metabolites. 3 Biotech. 10(8), 337 (2020). https://doi.org/10.1007/s13205-020-02333y [CrossRef] [PubMed] [Google Scholar]
- V.K. Chaturvedi, S. Agarwal, K.K. Gupta, P.M. Ramteke, M.P. Singh, Medicinal mushroom: boon for therapeutic applications. 3 Biotech. 8(8), 334 (2018). https://doi.org/10.1007/s13205-018-1358-0 [CrossRef] [PubMed] [Google Scholar]
- P. Joradon, V. Rungsardthong, U. Ruktanonchai, K. Suttisintong, T. lempridee, B. Thumthanaruk, S. Vatanyoopaisarn, N. Sumonsiri, D. Uttapap, Ergosterol content and antioxidant activity in Lion’s Mane mushroom (Hericium erinaceus) and its induction to vitamin D2 by UVC-irradiation, in Proceedings of the 8th International Conference on Agricultural and Biological Sciences-ABS, 2022 [Google Scholar]
- F. Binheam, B. Thumthanaruk, S. Vatanyoopaisarn, V. Rungsardthong, S. Poodchakarn, Antioxidant capacity of the bamboo mushroom (Dictyophora indusiata) and the effects of temperature and relative humidity on its growth, In proceeding of the 3rd International Conference on Informatics, Agriculture, Management, Business administration. Engineering, Science and Technology-IAMBEST, (2022) [Google Scholar]
- I. Ahmad, M. Arif, M. Xu, J. Zhang, Y. Ding, F. Lyu, Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review. Trends Food Sci Technol. 134, 123–135 (2023). https://doi.org/10.1016/j.tifs.2023.03.007 [CrossRef] [Google Scholar]
- T. Zhu, S.H. Kim, C. Y. Chen, A medicinal mushroom: Phellinus linteus. Curr Med Chem. 15(13), 1330–1335 (2008). https://doi.org/10.2174/092986708784534929. [CrossRef] [PubMed] [Google Scholar]
- P. Toopmuang, C. Khamchum, V. Punsuvon, Detection and confirmation of hispolon in the mushroom Phellinus linteus. J. Sci. Asia. 40, 141–144 (2014). http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.141 [CrossRef] [Google Scholar]
- W. Chen, H. Tan, Q. Liu, X. Zheng, H. Zhang, Y. Liu, L. Xu, A Review: The Bioactivities and Pharmacological Applications of Phellinus linteus. Molecules. 24(10), (2019). https://doi.org/10.3390/molecules24101888 [Google Scholar]
- U. Azeem, G.S. Dhingra, R. Shri, Some Additions to the Diversity of Genus Phellinus quell. From Wood Rotting Fungal Flora of District Dehradun (Uttarakhand) India. Res J Pharm Biol Chem Sci. (2017). http://dx.doi.org/10.26479/2017.0304.14 [Google Scholar]
- H. Chen, T. Tian, H. Miao, Y.Y. Zhao, Traditional uses, fermentation, phytochemistry and pharmacology of Phellinus linteus: A review. Fitoterapia. 113, 6–26 (2016). https://doi.org/10.1016/j.fitote.2016.06.009 [CrossRef] [PubMed] [Google Scholar]
- S.H. Wu, Y. Dai, T. Hattori, T. Yu, D. Wang, E. Parmasto, H. Chang, S. Shih, Species clarification for the medicinally valuable ‘sanghuang’ mushroom. Bot. Stud. 53(1), 135–149 (2012). [Google Scholar]
- Y.S. Lee, Y.H. Kang, J.Y. Jung, I.J. Kang, S.-N. Han, J.S. Chung, S.S. Lim, Inhibitory constituents of aldose reductase in the fruiting body of Phellinus linteus. Biol. Pharm. Bull. 31(4), 765–768 (2008). https://doi.org/10.1248/bpb.31.765 [CrossRef] [PubMed] [Google Scholar]
- W. Chen, Y. Shen, H. Su, X. Zheng, Hispidin derived from Phellinus linteus affords protection against acrylamide-induced oxidative stress in Caco-2 cells. Chem Biol Interact. 219, 83–89 (2014). https://doi.org/10.1016/j.cbi.2014.05.010 [CrossRef] [PubMed] [Google Scholar]
- C.J. Lin, H.M. Lien, H.Y. Chang, C.L. Huang, J.J. Liu, Y.C. Chang, C.C. Chen, C.H. Lai, Biological evaluation of Phellinus linteus-fermented broths as anti-inflammatory agents. J. Biosci. Bioeng. 118(1), 88–93 (2014). https://doi.org/10.1016/j.jbiosc.2014.01.001 [CrossRef] [Google Scholar]
- M.S. Lee, B.S. Hwang, I.K. Lee, G.S. Seo, B.S. Yun, Chemical Constituents of the Culture Broth of Phellinus linteus and Their Antioxidant Activity. Mycobiology. 43(1), 43–48 (2015). https://doi.org/10.5941%2FMYCO.2015.43.1.43 [CrossRef] [PubMed] [Google Scholar]
- B.V. Nieuwenhuijzen, Small-scale mushrooms cultivation 2, (Agrodok, Wageningen, 2007) [Google Scholar]
- H. Hur, Cultural Characteristics and Log-Mediated Cultivation of the Medicinal Mushroom, Phellinus linteus. Mycobiology. 36(2), 81–7 (2008). https://doi.org/10.4489%2FMYCO.2008.36.2.081 [CrossRef] [PubMed] [Google Scholar]
- AOAC (Association of Official Analytical Chemists), Official Methods of Analysis of AOAC International, 16thed. Washington, D.C.: AOAC International, (1999) [Google Scholar]
- K. Theeraraksakul, K. Jaengwang, K. Choowongkomon, L. Tabtimmai, Exploring the Biological Functions and Anti-Melanogenesis of Phallus indusiatus for Mushroom-Based Cosmetic Applications. Cosmetics. 10(5), 121 (2023). https://doi.org/10.3390/cosmetics10050121. [CrossRef] [Google Scholar]
- G.J. Min, W. Kang, Artificial cultivation characteristics and bioactive effects of novel Tropicoporus linteus (Syn. Phellinus linteus) strains HN00K9 and HN6036 in Korea. Mycobiology. 49(2), 161–172 (2021). https://doi.org/10.1080/12298093.2021.1892568 [Google Scholar]
- G.J. Min, A.M. Kwak, S.J. Seok, H.W. Kang, Morphological and cultural characteristics of a novel Phellinus linteus KACC93057. J. Mushrooms. 14(3), 75–80 (2016). http://dx.doi.org/10.14480/JM.2016.14.3.75 [CrossRef] [Google Scholar]
- N. Tachabenjarong, V. Rungsardthong, U. Ruktanonchi, S. Poodchakarn, B. Thumthanaruk, S. Vatanyoopaisarn, K. Suttisintong, T. Iempridee, D. Uttapap, Bioactive compounds and antioxidant activity of Lion’s Mane mushroom (Hericium erinaceus) from different growth periods, in Proceedings of International Conference on Research, Invention, and Innovation Congress RI2C 2022, 4-5 August, Bangkok (2022) [Google Scholar]
- L. Chen, L. Qian, X. Zhang, J. Li, Z. Zhang, X. Chen, Research progress on indoor environment of mushroom factory. IJABE. 15(1), 25–32 (2022). http://dx.doi.org/10.25165/j.ijabe.20221501.6872 [Google Scholar]
- T. Islam, Z. Zakaria, N. Hamidin, M. Ishak, Indoor Cultivation Model of Humidifying and Ventilation Systems for Grey Oyster Mushroom (Pleurotus pulmonarius). J. Sci. Technol. 10(41), 1–12 (2017). http://dx.doi.org/10.17485/ijst/2017/v10i41/101378 [Google Scholar]
- D.H. Jung, J.E. Son, CO2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces. Sustainability. 13(10), 5434 (2021). https://doi.org/10.3390/su13105434 [CrossRef] [Google Scholar]
- F. Khan, R. Chandra, Effect of physiochemical factors on fruiting body formation in mushroom. Int. J. Pharm. Sci. 32(4), 33–36 (2017). http://dx.doi.org/10.1016/j.fbr.2018.02.003 [Google Scholar]
- Y.H. Yun, J.S. Koo, S.H. Kim, W.S. Kong, Cloning and Expression Analysis of Phenylalanine Ammonia-Lyase Gene in the Mycelium and Fruit Body of the Edible Mushroom Flammulina velutipes. Mycobiology. 43(3), 327–332 (2015). https://doi.org/10.5941/myco.2015.43.3.327 [CrossRef] [PubMed] [Google Scholar]
- R. Zhou, H. Yang, T. Lu, Y. Zhao, W. Zheng, Ultraviolet radiation promotes the production of hispidin polyphenols by medicinal mushroom Inonotus obliquus. Fungal Biol. 126(11), 775–785 (2020). https://doi.org/https://doi.org/10.1016/j.funbio.2022.10.001 [CrossRef] [PubMed] [Google Scholar]
- G.J. Min, E.U. Jeong, B.S. Yun, H.W. Kang, Chemical identification and antioxidant activity of phenolic compounds extracted from the fruiting body of ’Hankyong Sanghwang’, Phellinus linteus KACC 93057P. J. Mushroom. 16(4), 311–317 (2018). [Google Scholar]
- A. Floegel, D.O. Kim, S.J. Chung, S.I. Koo, O.K. Chun, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 24(7), 1043–1048 (2011). https://doi.org/10.1016/j.jfca.2011.01.008 [CrossRef] [Google Scholar]
- A. Gil-Ramírez, C. Pavo-Caballero, E. Baeza, N. Baenas, C. Garcia-Viguera, F.R. Marín, C. SolerRivas, Mushrooms do not contain flavonoids. J. Funct. Foods. 25, 1–13 (2016). https://doi.org/10.1016/j.jff.2016.05.005 [CrossRef] [Google Scholar]
- N. Pacienza, R.H. Lee, E.H. Bae, D.K. Kim, Q. Liu, D.J. Prockop, G. Yannarelli, In vitro macrophage assay predicts the in vivo anti-inflammatory potential of exosomes from human mesenchymal stromal cells. Mol Ther Methods Clin Dev. 13, 67–76 (2019). https://doi.org/10.1016/j.omtm.2018.12.003 [CrossRef] [PubMed] [Google Scholar]
- A. Kaur, S. Attri, A. Kumar, P. Mohana, S. Singh, P. Kaur, E. Ram, G.S. Dhingra, S. Arora, A.P. Singh, Valorization of Polypore Mushroom Phellinus fastuosus by Analyzing Antioxidative, Antiproliferative and Apoptosis Induction Potential. Waste Biomass Valorization. 14(8), 2659–2672 (2023). https://doi.org/10.1007/s12649-023-02046-2 [CrossRef] [Google Scholar]
- R.R. Bhonde, P.Y. Lamrood, J.G. Vaidya, Anticarcinogenic activity of two species of Phansomba, Phellinus merrillii (Murr.) Ryv. and Ph. fastuosus (Lev.) Ryv., on SiHa cell lines. Int. J. Med. Mushrooms. 4(2), 6 (2002). http://dx.doi.org/10.1615/IntJMedMushr.v4.i2.60 [CrossRef] [Google Scholar]
- F. Zhang, T. Jin, Q. Hu, P. He, Distinguishing skin cancer cells and normal cells using electrical impedance spectroscopy. JEAC. 823, 531–536 (2018). https://doi.org/10.1016/j.jelechem.2018.06.021 [Google Scholar]
- X. Hu, K. Ganesan, H. Khan, B. Xu, Critical Reviews on Anti-Cancer Effects of Edible and Medicinal Mushroom Phellinus linteus and Its Molecular Mechanisms. Food Rev. Int. 40(4), 1118–1137 (2024). https://doi.org/10.1080/87559129.2023.2212036 [CrossRef] [Google Scholar]
- M. Gao, Y. Huang, C. Hu, J. Hu, Y. Wang, Y. Chen, Y. Huang, G. Song, Z. Song, Z. Wang, Selective Anticancer Effect of Phellinus Linteus on Epidermoid Cell Lines Studied by Atomic Force Microscopy: Anticancer Activity on A431 Cancer Cells and Low Toxicity on HaCaT Normal Cells. IEEE Nanotechnol. Mag. 15(1), 4–16 (2021). https://doi.org/10.1109/MNANO.2020.3037439 [CrossRef] [Google Scholar]
- M. J. Hsieh, S.Y. Chien, Y.E. Chou, C.J. Chen, J. Chen, M.K. Chen, Hispolon from Phellinus linteus possesses mediate caspases activation and induces human nasopharyngeal carcinomas cells apoptosis through ERK1/2, JNK1/2 and p38 MAPK pathway. Phytomedicine. 21(12), 1746–1752 (2014). https://doi.org/10.1016/j.phymed.2014.07.013 [CrossRef] [PubMed] [Google Scholar]
- M.C. Hsin, Y.H. Hsieh, P.H. Wang, J.L. Ko, I.L. Hsin, S.F. Yang, Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells. Cell Death Dis. 8(10), e3089e3089 (2017). https://doi.org/10.1038/cddis.2017.459 [Google Scholar]
- J.W. Coleman, Nitric oxide in immunity and inflammation. Int Immunopharmacol. 1(8), 1397–406. https://doi.org/10.1016/s1567-5769(01)00086-8 [Google Scholar]
- L. Wang, Z. Cao, Z. Wang, J. Guo, J. Wen, Reactive oxygen species associated immunoregulation post influenza virus infection. Front. immunol. 13, 927593 (2022). https://doi.org/10.3389/fimmu.2022.927593 [CrossRef] [Google Scholar]
- S. Afzal, A.S. Abdul Manap, A. Attiq, I. Albokhadaim, M. Kandeel, S.M. Alhojaily, From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol. 14, 1269581 (2023). https://doi.org/10.3389/fphar.2023.1269581 [CrossRef] [PubMed] [Google Scholar]
- N.M. Sandhiutami, M. Moordiani, D.R. Laksmitawati, N. Fauziah, M. Maesaroh, W. Widowati, In vitro assesment of anti-inflammatory activities of coumarin and Indonesian cassia extract in RAW264.7 murine macrophage cell line. Iran J Basic Med Sci. 20(1), 99–106 (2017). https://doi.org/10.22038%2Fijbms.2017.8102 [PubMed] [Google Scholar]
- T. Joo, K. Sowndhararajan, S. Hong, J. Lee, S.Y., Park, S. Kim, J.W. Jhoo, Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi J Biol Sci. 21(5), 427–35 (2014). https://doi.org/10.1016/j.sjbs.2014.04.003 [CrossRef] [PubMed] [Google Scholar]
- M.R. Shin, J.H. Lee, J.A. lee, M.J. Kim, H.J. Park, B.W. Park, S.B. Seo, S.S. Roh, Immunomodulatory and anti-inflammatory effects of Phellinus linteus mycelium. BMC Complement Altern Med. 21(1), 269 (2021). https://doi.org/10.1186%2Fs12906-021-03441-9 [CrossRef] [Google Scholar]
- H. Sheng, J. Shao, M.K. Washington, R.N. DuBois, Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. JBC. 276(21), 18075–18081 (2001). https://doi.org/10.1074/jbc.m009689200 [CrossRef] [Google Scholar]
- J. Wang, B. Chen, F. Hu, X. Zou, H. Yu, J. Wang, H. Zhang, H. He, W. Huang, Effect of Hispolon from Phellinus lonicerinus (Agaricomycetes) on Estrogen Receptors, Aromatase, and Cyclooxygenase II in MCF-7 Breast Cancer Cells. Int. J. Med. Mushrooms. 19(3), 233–242 (2017). https://doi.org/10.1615/intjmedmushrooms.v19.i3.50 [CrossRef] [PubMed] [Google Scholar]
- Z.Q. Chang, E. Gebru, S.P. Lee, M.H. Rhee, J.C. Kim, S.C. Park, In vitro antioxidant and antiinflammatory activities of protocatechualdehyde isolated from Phellinus gilvus. J Nutr Sci Vitaminol (Tokyo). 57(1), 118–122 (2011). https://doi.org/10.3177/jnsv.57.118 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.