Open Access
Issue
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
Article Number 02005
Number of page(s) 11
Section Food Sustainability
DOI https://doi.org/10.1051/e3sconf/202561002005
Published online 23 January 2025
  1. F. Bastian, O.S. Hutabarat, A. Dirpan, F. Nainu, H. Harapan, T. B. Emran, J. Simal-Gandara, From plantation to cup: Changes in bioactive compounds during coffee processing. J Food Sci. 10, 2827 (2021) [Google Scholar]
  2. S.J. Martinez, M. H. S. Rabelo, A. P. P. Bressani, M. C. B. Da Mota, F. M. Borém, R. F. Schwan, Novel stainless steel tanks enhances coffee fermentation quality. Food Res Int. 139, 109921 (2021) https://doi.org/10.1016/j.foodres.2020.109921 [CrossRef] [PubMed] [Google Scholar]
  3. S. Sittipod, E. Schwartz, L. Paravisini, E. Tello, D. Peterson, Identification of Compounds that Negatively Impact Coffee Quality Using Untargeted LC/MS Analysis. J Agric Food Chem. (2020). doi:10.1021/acs.jafc.0c01479 [Google Scholar]
  4. N. Córdoba, F. L. Moreno, C. Osorio, S. Velásquez, M. Fernandez-Alduenda, Y. RuizPardo, Specialty and regular coffee bean quality for cold and hot brewing: Evaluation of sensory profile and physicochemical characteristics. Food Sci Technol. 145, 111363 (2021). https://doi.org/10.1016/j.lwt.2021.111363 [Google Scholar]
  5. G. V. de Melo Pereira, E. Neto, V. T. Soccol, A. B. P. Medeiros, A. L. Woiciechowski, C. R. Soccol, Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Res Int. 75, (2015). https://doi.org/10.1016/j.foodres.2015.06.027 [Google Scholar]
  6. A. Pandey, C. R. Soccol, P. Nigam, D. Brand, R. Mohan, S. Roussos, Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. 6, (2000). https://doi.org/10.1016/j.ijfoodmicro.2006.04.030 [Google Scholar]
  7. W. Masoud & L. Jespersen, Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa. Int J Food Microbiol. 110, (2006). https://doi.org/10.1016/j.ijfoodmicro.2006.04.030 [Google Scholar]
  8. G. Pereira, V. Thomaz-Soccol, A. Pandey, A. Medeiros, J. Lara, A. Gollo, C. Soccol, Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. Int J Food Microbiol. 188C, (2014) (doi:10.1016/j.ijfoodmicro.2014.07.008) [Google Scholar]
  9. R. Schwan, G. Pereira, G. H. Fleet, Microbial activities during cocoa fermentation, Cocoa and coffee fermentations. 129-192, (2014) [CrossRef] [Google Scholar]
  10. R. A. Buffo & C. Cardelli-Freire, Coffee flavour: an overview. Flavour Fragr. J. 19, (2004). https://doi.org/10.1002/ffj.1325 [Google Scholar]
  11. H. Tian, P. Wang, P. Zhan, H. Yan, W. Zhou, F. Zhang, Effects of β-glucosidase on the aroma characteristics of flat peach juice as assessed by descriptive sensory analysis and gas chromatography and compared by partial least squares regression. Food Sci Technol. 82, (2017). https://doi.org/10.1016/j.lwt.2017.04.029 [Google Scholar]
  12. B. de Morais Souto, M. Florentino Barbosa, R. M. Marinsek Sales, S. Conessa Moura, A. de Rezende Bastos Araújo, B. Ferraz Quirino, The potential of β-glucosidases for aroma and flavor improvement in the food industry. The Microbe. 1, (2023). https://doi.org/10.1016/j.microb.2023.100004 [CrossRef] [Google Scholar]
  13. P. Wiriyajaree, Development of Flavor in Arabica Coffee from Coffee By-product 1” Phase: Production of Green Coffee Bean Using Enzymatic Technology. Master Thesis, CMU, Thailand, 2015 [Google Scholar]
  14. W. Dong, R. Hu, Z. Chu, J. Zhao, L. Tan, Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chem. 234, (2017). doi:10.1016/j.foodchem.2017.04.156 [Google Scholar]
  15. S. Sasanam, B. Thumthanaruk, S. Wijuntamook, V. Rattananupap, S. Vatanyoopaisarn, C. Puttanlek, D. Uttapap, S. I. Mussatto, V. Rungsardthong, Extrusion of process flavorings from methionine and dextrose using modified starch as a carrier. PLoS One. 18, (2023). doi:10.1371/journal.pone.0269857 [Google Scholar]
  16. A. Farah & C. M. Donangelo, Phenolic compounds in coffee, Brazilian Journal of Plant Physiology. 18, (2006). doi:10.1590/S1677-04202006000100003 [Google Scholar]
  17. A. T. Toci & A. Farah, Volatile fingerprint of Brazilian defective coffee seeds: Corroboration of potential marker compounds and identification of new low quality indicators. Food Chem. 153, (2014). doi:10.1016/j.foodchem.2013.12.040 [Google Scholar]
  18. İ. Çinar, Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem. 40, (2005).doi:https://doi.org/10.1016/j.procbio.2004.02.022 [Google Scholar]
  19. V. Rungsardthong, S. Kokerd, P. Chokchaithanawiwat, T. Yasutomo, A study on the volatile compounds in Japanese alcoholic beverage (Awamori) produced from Thai rice varieties. JCST. 13, (2023). doi:10.59796/jcst.V13N2.2023.663 [Google Scholar]
  20. P. Montavon, A. Mauron, E. Duruz, Changes in Green Coffee Protein Profiles during Roasting. J Agric Food Chem. 51, (2003). doi:10.1021/jf020832b [Google Scholar]
  21. J. S. Rosa, O. Freitas-Silva, R. L. O. Godoy, C. M. Rezende, Roasting Effects on Nutritional and Antinutritional Compounds in Coffee (Food Processing Technologies, USA, 2016) [Google Scholar]
  22. L. W. Lee, M. W. Cheong, P. Curran, B. Yu, S. Q. Liu, Coffee fermentation and flavor – An intricate and delicate relationship. Food Chem. 185, (2015). doi:10.1016/j.foodchem.2015.03.124 [Google Scholar]
  23. S. J. Zhang, F. De Bruyn, V. Pothakos, J. Torres, C. Falconi, C. Moccand, S. Weckx, L. De Vuyst, Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Processing of Coffea arabica. Appl. Environ. Microbiol. 85, (2019). doi:10.1128/aem.02635-18 [Google Scholar]
  24. N. Yang, C. Liu, X. Liu, T. K. Degn, M. Munchow, I. Fisk, Determination of volatile marker compounds of common coffee roast defects. Food Chem. 211, (2016). https://doi.org/10.1016/j.foodchem.2016.04.124 [Google Scholar]
  25. Y. H. Hui, E. Ö. Evranuz, Animal-based fermented food and beverage technology, (CRC press, USA, 2012) [Google Scholar]
  26. W. B. Sunarharum, D. J. Williams, H. E. Smyth, Complexity of coffee flavor: A compositional and sensory perspective. Food Res Int. 62, (2014). [Google Scholar]
  27. A. P. P. Bressani, N. N. Batista, G. Ferreira, S. J. Martinez, J. B. P. Simão, D. R. Dias, R. F. Schwan, Characterization of bioactive, chemical, and sensory compounds from fermented coffees with different yeasts species. 150, 110755 (2021). https://doi.org/10.1016/j.foodres.2021.110755 [Google Scholar]
  28. M. Akiyama, K. Murakami, M. Ikeda, K. Iwatsuki, A. Wada, K. Tokuno, M. Onishi, H. Iwabuchi, Analysis of the Headspace Volatiles of Freshly Brewed Arabica Coffee Using Solid-Phase Microextraction. J Food Sci. 72, (2007). https://doi.org/10.1111/j.1750-3841.2007.00447.x [CrossRef] [Google Scholar]
  29. P. Zakidou, F. Plati, A. Matsakidou, E.-M. Varka, G. Blekas, A. Paraskevopoulou, Single origin coffee aroma: From optimized flavor protocols and coffee customization to instrumental volatile characterization and chemometrics. Molecules. 26, 4609 (2021) [CrossRef] [PubMed] [Google Scholar]
  30. R. Kipkorir, S. Muhoho, P. Muliro, B. Mugendi, M. Frohme, O. Brödel, Effects of coffee processing technologies on aroma profiles and sensory quality of Ruiru 11 and SL 28 Kenyan coffee varieties. Asian J. Agric. Sci. 3, (2015) [Google Scholar]
  31. I. Flament, Coffee flavor chemistry, (Wiley, USA, 2001) [Google Scholar]
  32. G. V. de Melo Pereira, D. P. de Carvalho Neto, A. I. Magalhães Júnior, Z. S Vásquez, A. B. P. Medeiros, L. P. S. Vandenberghe, C. R. Soccol, Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chem. 272, (2019). https://doi.org/10.1016/j.foodchem.2018.08.061 [Google Scholar]
  33. N. Caporaso, M. B. Whitworth, S. Grebby, I. D. Fisk, Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Res Int. 106, (2018) [Google Scholar]
  34. N. Barié, M. Bücking, U. Stahl, M. Rapp, Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW). Food Chem. 176, (2015). https://doi.org/10.1016/j.foodchem.2014.12.032 [Google Scholar]
  35. L. W. Lee, M. W. Cheong, P. Curran, B. Yu, S. Q. Liu, Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: I. Green coffee. Food Chem. 211, (2016). https://doi.org/10.1016/j.foodchem.2016.05.076 [Google Scholar]
  36. C. Crews & L. Castle, A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci. Technol. 18, (2007). https://doi.org/10.1016/j.tifs.2007.03.006 [Google Scholar]
  37. J. S. Ribeiro, F. Augusto, T. J. G. Salva, R. A. Thomaziello, M. M. C. Ferreira. Prediction of sensory properties of Brazilian Arabica roasted coffees by headspace solid phase microextractiongas chromatography and partial least squares. Anal. Chim. Acta. 634, (2009). https://doi.org/10.1016/j.aca.2008.12.028 [Google Scholar]
  38. B. L. Da Silva, P. V. Pereira, L. D. Bertoli, D. L. Silveira, N. N. Batista, P. F. Pinheiro, J. de Souza Carneiro, P. F. Schwan, S. de Assis Silva, J. M. Coelho, P. C. Bernardes, Fermentation of Coffea canephora inoculated with yeasts: Microbiological, chemical, and sensory characteristics. Food Microbiol. 98, 103786 (2021) [CrossRef] [PubMed] [Google Scholar]
  39. H. Elhalis, J. Cox, J. Zhao, Ecological diversity, evolution and metabolism of microbial communities in the wet fermentation of Australian coffee beans. Int. J. Food Microbiol. 137, 110430 (2021). https://doi.org/10.1016/j.lwt.2020.110430 [Google Scholar]
  40. Q. Xiang, Y. Xia, L. Chen, M. Chen, D. Wang, F. Zhong, Flavor precursors and flavor compounds in Cheddar-flavored enzyme-modified cheese due to pre-enzymolysis combined with lactic acid bacteria fermentation. Food Biosci. 53, 102698 (2023). https://doi.org/10.1016/j.fbio.2023.102698 [CrossRef] [Google Scholar]
  41. L. Ruta & I. C. Farcasanu, Coffee and Yeasts: From Flavor to Biotechnology, Ferment. Technol. 7, (2021). doi:10.3390/fermentation7010009 [Google Scholar]
  42. R. Dorfner, T. Ferge, A. Kettrup, R. Zimmermann, C. Yeretzian, Real-time monitoring of 4vinylguaiacol, guaiacol, and phenol during coffee roasting by resonant laser ionization time-of-flight mass spectrometry. J Agric Food Chem. 51, 57685773 (2003). doi:10.1021/jf0341767 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.