Open Access
Issue
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
Article Number 04006
Number of page(s) 5
Section Environmental Technology
DOI https://doi.org/10.1051/e3sconf/202561004006
Published online 23 January 2025
  1. I.B. Muhit, M.T. Raihan, M.D. Nuruzzama, Determination of mortar strength using stone dust as a partially replaced material for cement and sand. Adv. Concr. Constr. 2, 249–259 (2014). https://doi.org/10.12989/acc.2014.2.4.249. [CrossRef] [Google Scholar]
  2. K. Suito, J. Namba, T. Horikawa, Y. Taniguchi, N. sakurai, M. Kobayashi, A. Onodera, O. Shimomura, T. Kikegawa, Phase relations of CaCO3 at high pressure and high temperature. Am. Mineral. 86, 997–1002 (2001). https://doi.org/10.2138/am-2001-8-906. [CrossRef] [Google Scholar]
  3. A. Dwivedi, M.K. Jain, Fly ash – waste management and overview: a review. Recent Res. Sci. Tech. 6(1): 30–35 (2014). [Google Scholar]
  4. I.M.T. Tatarchuk, N. Paliychuk, I. Heviuk, A. Horpynko, O. Yarem, I. Mykytyn, Effect of surfacemodified fly ash on compressive strength of cement mortar. Mater. Today. 35(4), 534–537 (2021). https://doi.org/10.1016/j.matpr.2019.10.016. [Google Scholar]
  5. S. Shirkhanloo, M. Najafi, V. Kaushal, M. Rajabi, A comparative study on the effect of class C and class F fly ashes on geotechnical properties of highplasticity clay. Civil Eng. 2, 1009–1018 (2021). https://doi.org/10.3390/civileng2040054. [Google Scholar]
  6. ASTM C618-22. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken, PA (2022). [Google Scholar]
  7. ASTM C136/C 136M-19. Standard test method for sieve analysis of fine and coarse aggregates. ASTM International, West Conshohocken, PA (2020). [Google Scholar]
  8. ASTM C33/C 33M-18. Standard specification for concrete aggregates. ASTM International, West Conshohocken, PA (2019). [Google Scholar]
  9. ASTM C109/C 109M-20. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International, West Conshohocken, PA (2020). [Google Scholar]
  10. S. Chaiyaput, N. Arwaedo, N. Kingnoi, T.N. Nguyen, J. Ayawanna, Effect of curing conditions on the strength of soil cement. Case Stud. Constr. Mater. 16, e01082 (2022). https://doi.org/10.1016/j.cscm.2022.e01082. [Google Scholar]
  11. S. Chaiyaput, P. Sertsoongnern, J. Ayawanna, Utilization of waste dust from asphalt concrete manufacturing as a sustainable subbase course material in pavement structures. Sustainability. 14, 9804 (2022). https://doi.org/10.3390/su14169804. [CrossRef] [Google Scholar]
  12. Y.K. Cho, S.H. Jung, Y.C. Choi, Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar, Constr. Build. Mater. 204(20), 255–264 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.208. [CrossRef] [Google Scholar]
  13. C.H. Wu, C.H. Huang, Y.C. Kan, T. Yen, Effects of fineness and dosage of fly ash on the fracture properties and strength of concrete. Appl. Sci. 9(11), 2266 (2019). https://doi.org/10.3390/app9112266. [CrossRef] [Google Scholar]
  14. C.H. Huang, S.K. Lin, C.S. Chang, H.J. Chen, Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash, Constr. Build. Mater. 46, 71–78 (2013). https://doi.org/10.1016/j.conbuildmat.2013.04.016. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.