Open Access
Issue
E3S Web Conf.
Volume 612, 2025
5th Asia Environment and Resource Engineering Conference (AERE 2024)
Article Number 04003
Number of page(s) 7
Section Waste Utilization and Waste Valorization
DOI https://doi.org/10.1051/e3sconf/202561204003
Published online 31 January 2025
  1. M. M. H. Imran, S. Jamaludin, and A. F. Mohamad Ayob: A Critical Review of Machine Learning Algorithms in Maritime, Offshore, and Oil & Gas Corrosion Research: A Comprehensive Analysis of ANN and RF Models, Ocean Engineering, vol. 295. (2024) [Google Scholar]
  2. H. Pezeshki, H. Adeli, D. Pavlou, and S. C. Siriwardane: State of The Art in Structural Health Monitoring of Offshore and Marine Structures, Proceedings of the Institution of Civil Engineers: Maritime Engineering, vol. 176, no. 2, pp. 89–108. (2023) [CrossRef] [Google Scholar]
  3. M. Y. Tan: Localized Corrosion in Complex Environments. Wiley (2023) [Google Scholar]
  4. F. Du, C. Li, and W. Wang: Development of Subsea Pipeline Buckling, Corrosion and Leakage Monitoring, Journal of Marine Science and Engineering, vol. 11, no. 1. MDPI. (2023) [Google Scholar]
  5. S. Budhe, M. D. Banea, and S. de Barros: Prediction of the burst pressure for defective pipelines using different semi-empirical models, Frattura ed Integrita Strutturale, vol. 14, no. 52, pp. 137–147. (2020) [CrossRef] [Google Scholar]
  6. M. Fahed, I. Barsoum, A. Alfantazi, and M. D. Islam: Burst Pressure Prediction of Pipes with Internal Corrosion Defects, Journal of Pressure Vessel Technology, Transactions of the ASME, vol. 142, no. 3. (2020) [Google Scholar]
  7. M. Lo, S. Karuppanan, and M. Ovinis: Failure Pressure Prediction of a Corroded Pipeline with Longitudinally Interacting Corrosion Defects Subjected to Combined Loadings using FEM and ANN, Journal Marine Science Engineering, vol. 9, no. 3. (2021) [Google Scholar]
  8. M. F. Muda, M. H. Mohd Hashim, M. K. Kamarudin, M. H. Mohd, T. Tafsirojjaman, M. Abdul Rahman: Burst Pressure Strength of Corroded Subsea Pipelines Repaired with Composite Fiber-Reinforced Polymer Patches, Engineering Failure Analysis, vol. 136. (2022) [Google Scholar]
  9. X. Lang, C. Wang, Z. Wang, X. Zhang, and H. Zhang: A Pipeline Leakage Diagnosis Method Based on CNN-BiGRU Twin Network, in 5th International Conference on Control and Robotics, ICCR 2023, pp. 90–93. (2023) [Google Scholar]
  10. Z. Liu, J. Mei, D. Wang, Y. Guo, and L. Wu: A Novel Damage Identification Method for Steel Catenary Risers Based on a Novel CNN-GRU Model Optimized by PSO, Journal Marine Science Engineering, vol. 11, no. 1. (2023) [Google Scholar]
  11. M. A. Azam, S. Sukarti, and M. Zaimi: Corrosion Behavior Of API-5L-X42 Petroleum/Natural Gas Pipeline Steel in South China Sea and Strait of Melaka Seawaters, Engineering Failure Analysis, vol. 115. (2020) [Google Scholar]
  12. S. Agbo, A. Imanpour, Y. Li, M. Kainat, N. Yoosef-Ghodsi, J. Cheng, S. Adeeb: Development of A Tensile Strain Capacity Predictive Model for American Petroleum Institute 5L X42 Welded Vintage Pipelines, Journal of Pressure Vessel Technology, Transactions of the ASME, vol. 142, no. 6. (2020) [CrossRef] [PubMed] [Google Scholar]
  13. S. D. V. Kumar, S. Karuppanan, and M. Ovinis: Failure Pressure Prediction of High Toughness Pipeline with A Single Corrosion Defect Subjected to Combined Loadings using Artificial Neural Network (ANN), Metals (Basel), vol. 11, no. 2, pp. 1–25. (2021) [Google Scholar]
  14. X. K. Zhu: A Comparative Study of Burst Failure Models for Assessing Remaining Strength of Corroded Pipelines, Journal of Pipeline Science and Engineering, vol. 1, no. 1, pp. 36–50. (2021) [CrossRef] [Google Scholar]
  15. M. M. Shahzamanian, M. Lin, M. Kainat, N. Yoosef-Ghodsi, and S. Adeeb: Systematic Literature Review of The Application of Extended Finite Element Method in Failure Prediction of Pipelines, Journal of Pipeline Science and Engineering, vol. 1, no. 2, pp. 241–251. (2021) [CrossRef] [Google Scholar]
  16. M. Tan and Q. V. Le: EfficientNetV2: Smaller Models and Faster Training, Available on http://arxiv.org/abs/2104.00298. (2021) [Google Scholar]
  17. S. Tummala, V. S. G. Thadikemalla, S. Kadry, M. Sharaf, and H. T. Rauf: EfficientNetV2 Based Ensemble Model for Quality Estimation of Diabetic Retinopathy Images from DeepDRiD, Diagnostics, vol. 13, no. 4. (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.