Open Access
Issue |
E3S Web Conf.
Volume 614, 2025
International Conference on Agritech and Water Management (ICAW 2024)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 8 | |
Section | Renewable Energy Sources and Energy-Saving Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202561401009 | |
Published online | 07 February 2025 |
- Baskys, V. K. Hyunh, A. Serackis, M. Sapurov, J. Zakis, R. Pomarnacki, M. Jankauskas, T. Vaimann, Sensors (Basel). 23 (12), 5695 (2023) [CrossRef] [Google Scholar]
- Bosch, R. Simon-Carbajo, Perspective Chapter: Computation of Wind Turbine Power Generation, Anomaly Detection and Predictive Maintenance (2023), https://www.intechopen.com/chapters/85780 [Google Scholar]
- Shaheen, I. Nemeth, Processes 11 (1), 269 (2023) [CrossRef] [Google Scholar]
- An integrated maintenance and power generation forecast by ANN approach based on availability maximization of a wind farm (2022), https://www.sciencedirect.com/science/article/am/pii/S2352484722012501 [Google Scholar]
- Y. M. I. Hassan, Z. Tamer, M. Ayman, N. Mahmoud, M. Othman, “Fault Detection in Wind Turbines using Deep Learning”, in Conference: 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC) (2022) [Google Scholar]
- Scientometric Review of Artificial Intelligence for Operations & Maintenance of Wind Turbines: The Past, Present and Future (2022), https://arxiv.org/pdf/2204.02360 [Google Scholar]
- V. Ranganayaki, S. N. Deepa, Scientific World Journal 2016, 9293529 (2016) [CrossRef] [Google Scholar]
- F. Keynia, D. Astiaso Garcia, M. Hassani, A. Lakzadeh, D. Groppi, A. Heydari, Short Term Wind Speed Forecasting Model Using Hybrid Neural Networks and Wavelet Packet Decomposition (2023), https://link.springer.com/chapter/10.1007/978-3-031-29515-7_7 [Google Scholar]
- S. Esmaeili, Artificial Neural Network and EWMA-based Fault Prediction in Wind Turbines, https://www.academia.edu/15527577/Artificial_Neural_Network_and_EWMA_based_Fault_Prediction_in_Wind_Turbines [Google Scholar]
- R. F. Mesquita, F. P. Maciel, J. A. Beleza, R. F. Brandao, Application of neural networks for failure detection on wind turbines (2011), https://www.academia.edu/75088137/Application_of_neural_networks_for_failure_detection_on_wind_turbines?f_ri=1363034 [Google Scholar]
- J. Peng, A. Kimmig, Zh. Niu, J. Wang, X. Liu, D. Wang, J. Ovtcharova, International Journal of Electrical Power & Energy Systems 134, 107391 (2022) [CrossRef] [Google Scholar]
- L. Kou, Y. Li, Q. Yuan, X. Gong, W. Ke, F. Zhang, Y. Hu, Sensors (Basel). 22(8), 2822 (2022) [CrossRef] [Google Scholar]
- WESC 23 Event Info Site, https://abbey.eventsair.com/AbbeyEventApp/wind-energy-science-conference-wesc-2023/wesc-info-site/Agenda/AgendaItemDetail?id=16790117-9f28-4d97-a7cf-c2bcc91c2896 [Google Scholar]
- Dr. Sadjadi, Microsoft Word - ijdns_2019_25.docx (2019), https://www.growingscience.com/ijds/Vol3/ijdns_2019_25.pdf [Google Scholar]
- S. Fogelstrom, P. Bangalore, S. Sagitov, Q. Yu, Energies 17 (2), 280 (2024) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.