Open Access
Issue
E3S Web Conf.
Volume 615, 2025
2024 International Conference on Environmental Protection and Pollution Control (EPPC 2024)
Article Number 01007
Number of page(s) 4
Section Research on Environment and Ecosystem Optimisation and Management
DOI https://doi.org/10.1051/e3sconf/202561501007
Published online 14 February 2025
  1. Andrews R, (2001), Carbon materials in environmental applications[J]. Chemistry and physics of carbon, 27: 1–66. [Google Scholar]
  2. Amalina F, Abd Razak A S, Krishnan S, (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications–A review[J]. Journal of Hazardous Materials Advances, 100134. [CrossRef] [Google Scholar]
  3. Atta O M, Manan S, Shahzad A, (2022), Biobased materials for active food packaging: A review[J]. Food Hydrocolloids, 125: 107419. [CrossRef] [Google Scholar]
  4. Arnao M B, Cano A, Acosta M. (1999), Methods to measure the antioxidant activity in plant material. A comparative discussion[J]. Free Radical Research, 31 (sup1): 89–96. [CrossRef] [Google Scholar]
  5. Astriani M, Zubaidah S, Abadi A L, (2021). The development of biological fertilizer technology module to increase farmer’s knowledge of non-formal education in Malang district[C]// THE 4TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND SCIENCE EDUCATION (ICoMSE) 2020: Innovative Research in Science and Mathematics Education in The Disruptive Era. [Google Scholar]
  6. Amalina F, Abd Razak A S, Krishnan S, et al. (2022), Biochar production techniques utilizing biomass waste-derived materials and environmental applications–A review[J]. Journal of Hazardous Materials Advances, 100134. [CrossRef] [Google Scholar]
  7. Bko A, Nyi A, Svss A, (2022). Influence of plant biomass activation conditions on the structure and electrochemical properties of nanoporous carbon material. Materials Today: Proceedings, 62 (9) 5712–5716. Bledzki A K, Gassan J. 1999. Composites reinforced with cellulose based fibers. Progress in Polymer Science, 24: 221-274. [CrossRef] [Google Scholar]
  8. Cubides D, Guimerà X, Jubany I, (2022). A review: Biological technologies for nitrogen monoxide abatement[J]. Chemosphere: 137147. [PubMed] [Google Scholar]
  9. Cheng H H, Whang L M. (2022), Resource recovery from lignocellulosic wastes via biological technologies: Advancements and prospects[J]. Bioresource technology, 343: 126097. [CrossRef] [PubMed] [Google Scholar]
  10. Clauser, N.M.; González, G.; Mendieta, C.M.; Kruyeniski, J.; Area, M.C.; Vallejos, M.E. (2021), Biomass Waste as Sustainable Raw Material for Energy and Fuels. Sustainability 13, 794. [CrossRef] [Google Scholar]
  11. Chen J, Lü S, Zhang Z, (2018), Environmentally friendly fertilizers: A review of materials used and their effects on the environment[J]. Science of the total environment, 613: 829–839. [CrossRef] [Google Scholar]
  12. Chakraborty R, Vilya K, Pradhan M, (2022), Recent advancement of biomass-derived porous carbon based materials for energy and environmental remediation applications[J]. Journal of Materials Chemistry A, 10 (13): 6965–7005. [CrossRef] [Google Scholar]
  13. Chen Q, Tan X, Liu Y, (2020), Biomass-derived porous graphitic carbon materials for energy and environmental applications[J]. Journal of Materials Chemistry A, 8 (12): 5773–5811. [CrossRef] [Google Scholar]
  14. Cocusse M, Rosales M, Maillet B, (2022), Two-step diffusion in cellular hygroscopic (vascular plant-like) materials[J]. Science Advances, 8 (19): eabm7830. [CrossRef] [PubMed] [Google Scholar]
  15. Dhall S, Mehta B R, Tyagi A K, (2021), A review on environmental gas sensors: Materials and technologies[J]. Sensors International, 2: 100116. [CrossRef] [Google Scholar]
  16. Daniel A J, Enzo E R, Juliana M S, (2022). The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination[J]. Journal of Environmental Chemical Engineering: 107141. [Google Scholar]
  17. Envelope H O P, Miri T, Obileke K C, (2021), Minimizing carbon footprint via microalgae as a biological capture[J]. Carbon Capture Science & Technology [Google Scholar]
  18. Henry R J. (2022), Applied Biosciences: Application of Biological Science and Technology[J]. Applied Biosciences, 1. [Google Scholar]
  19. Jeong D, Park H, Jang B K, (2021), Recent advances in the biological valorization of citrus peel waste into fuels and chemicals[J]. Bioresource Technology, 323 (8): 124603. [CrossRef] [PubMed] [Google Scholar]
  20. Jiang X, Cheng W, Liu J (2020), Effect of Moisture Content during Preparation on the Physicochemical Properties of Pellets Made from Different Biomass Materials[J]. 15 (1): 557–573. [Google Scholar]
  21. Jiang Z, Ho S H, Wang X, (2021), Application of biodegradable cellulose-based biomass materials in wastewater treatment[J]. Environmental Pollution, 290: 118087 [CrossRef] [Google Scholar]
  22. Kumar S, Priyadarshini M, Ahmad A, (2023), Advanced biological and non-biological technologies for carbon sequestration, wastewater treatment, and concurrent valuable recovery: A review[J]. Journal of CO2 Utilization, 68: 102372. [CrossRef] [Google Scholar]
  23. Lim A L, Lim S, Pang Y L, (2022), Investigation on the Potential of Various Biomass Waste for the Synthesis of Carbon Material for Energy Storage Application[J]. Sustainability, 14. [Google Scholar]
  24. Katheresan, V.; Kansedo, J.; Lau, S.Y. (2018), Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 6, 4676–4697. [CrossRef] [Google Scholar]
  25. Es A, Na B, Wan W. (2022) 2. Synthesis, properties, and application of biomass-derived graphene-like material[J]. Graphene, Nanotubes and Quantum Dots-Based Nanotechnology, : 189–208. [Google Scholar]
  26. Liu D, Zhang G, Gui K (2022). Effects of drying process on the microstructure and properties of biomass-derived porous carbon material[J]. CERAMICS INTERNATIONAL, (14): 48. [Google Scholar]
  27. Mostovoy, A.; Yakovlev, A.; Tseluikin, V.; Lopukhova, M. (2020), Epoxy Nanocomposites Reinforced with Functionalized Carbon Nanotubes. Polymers 12, 1816. [CrossRef] [PubMed] [Google Scholar]
  28. Mirtaleb M S, Shahraky M K, Ekrami E, (2021), Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications[J]. Journal of Drug Delivery Science and Technology, 61: 102331. [CrossRef] [Google Scholar]
  29. Mohanty A K, Khan M A, Hinrichsen G. (2000a). Surface modification of jute and its influence on performance of biodegradable jute-fibric/Biopol composites. Composites Science and Technology, 60: 1115–1124. [CrossRef] [Google Scholar]
  30. Plackett D, Andersen T L, Pedersen W B, (2003). Biodergradable composites based on L-polylactide and jute fibers. Composites Science and Technology, 63 (9): 1287–1296. [CrossRef] [Google Scholar]
  31. Keller A. (2003). Compounding and mechanical properties of bioegradable hemp fibre composites. Composites Science and Technology, 63: 1307–1316. [CrossRef] [Google Scholar]
  32. Oksman K, Skrifvars M, Selin J. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63: 1317–1324. [CrossRef] [Google Scholar]
  33. Iannace S, Ali R, Nicolais L. (2001). Effect of processing conditions on dimentsins of sisal fibers in thermoplastic biodegradable composites. Journal of Applied Polymer Science, 79: 1084–1091. [CrossRef] [Google Scholar]
  34. Peterson S, Jayaraman K, Bhattacharyya D. (2002). Forming performance and biodegradability of woodfiber-BiopolTM composites. Composites Part A: Applied Science and Manufacturing (Incorporating), 33 (8): 1123–1134. [CrossRef] [Google Scholar]
  35. Lehmann J, Joseph S. (2015): Biochar for environmental management: an introduction [M]// Biochar for environmental management. Routledge, 1–13. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.