Open Access
Issue |
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 12 | |
Section | Green Computing | |
DOI | https://doi.org/10.1051/e3sconf/202561602001 | |
Published online | 24 February 2025 |
- S. B. P. G. Panduranga Rao, “Advanced Multi Encryption Technique in Cloud Computing,” Int. J. Innov. Res. Adv. Eng. (IJIRAE), vol. 1, pp. 26–29, 2014. [Google Scholar]
- Ugendhar, B. Illuri, M. R. Vulapula et al., “A Novel Intelligent-Based Intrusion Detection System Approach Using Deep Multilayer Classification,” Math. Probl. Eng., vol. 2022, no. 8030510, 2022. [CrossRef] [Google Scholar]
- P. Sabitha and V. B. Narasimha, “An Approach to Multi-Cloud Securities,” Int. J. Adv. Res. Ideas Innov. Technol., vol. 4, pp. 89–92. [Google Scholar]
- S. Kalra, K. Atal, and R. Jain, “Security Issues in Cloud Computing,” Int. J. Comput. Appl., vol. 167, no. 2, pp. 37–41, 2017. [Google Scholar]
- J. Jha and J. Pansuriya, “Multi-Level Authentication in Cloud Computing using 3D Security,” Nat. Conf. Cloud Comput. & Big Data, pp. 215–218. [Google Scholar]
- S. A. Hussain, M. Fatima, A. Saeed, I. Raza, and R. K. Shahzad, “Multilevel Classification of Security Concerns in Cloud Computing,” Appl. Comput. Inform., vol. 13, pp. 57–65, 2017. [CrossRef] [Google Scholar]
- T. Park, H. Seo, S. Lee, and H. Kim, “Secure Data Encryption for Cloud-Based Human Care Services,” J. Sensors, pp. 1–10, 2018. [Google Scholar]
- R. Mishra and M. Kumari, “Need of Multi-Layer Security in Cloud Computing for on Demand Network Access,” Int. J. Comput. Sci. Mob. Comput. (IJCSMC), vol. 4, pp. 398–404, 2015. [Google Scholar]
- Gholami and E. Laure, “Security and Privacy of Sensitive Data in Cloud Computing: A Survey of Recent Developments,” Comput. Sci. & Inf. Technol. (CS&IT), pp. 131150. [Google Scholar]
- L. Kamboj and P. Luthra, “Multi-Layer Data Security in Cloud Computing,” Int. J. Comput. Eng. Res. (IJCER), vol. 7, pp. 1–7, 2017. [Google Scholar]
- S. S. Khan and R. R. Tuteja, “Cloud Security Using Multilevel Encryption Algorithms,” Int. J. Adv. Res. Comput. Commun. Eng. (IJARCCE), vol. 5, 2016. [Google Scholar]
- X. Zhang, W. Guo, Z. Li, X. Zhao, and X. Qin, “MLFS: A Multiple Layers Share File System for Cloud Computing,” Globecom Workshop, pp. 99–105, 2014. [Google Scholar]
- Nandgaonkar and P. Kulkarni, “Encryption Algorithm for Cloud Computing,” Int. J. Comput. Sci. Inf. Technol. (IJCSIT), vol. 7, no. 2, pp. 983–989, 2016. [Google Scholar]
- D. S. A. Elminaam, “Improving the Security of Cloud Computing by Building New Hybrid Cryptography Algorithms,” IJEIE, vol. 8, no. 1, pp. 40–48, 2018. [Google Scholar]
- D. Hyseni, A. Luma, B. Selimi, and B. Cico, “The Proposed Model to Increase Security of Sensitive Data in Cloud Computing,” Int. J. Adv. Comput. Sci. Appl. (IJACSA), vol. 9, no. 2, pp. 203–210, 2018. [Google Scholar]
- K. Satyanarayana, “Multi-Level Security for Cloud Storage using Encryption Algorithms,” IJECS, vol. 5, pp. 17338–17346, 2016. [Google Scholar]
- He, J. Tang, Y. Ding et al., “Mining Relational Paths in Integrated Biomedical Data,” PLoS One, vol. 6, pp. 1–14, 2011. [Google Scholar]
- N. Jayapandian, A. M. J. Md. Zubair Rahman, M. Koushikaa, and S. Radhikadevi, “A Novel Approach to Enhance Multi-Level Security System Using Encryption with Fingerprint in Cloud,” IEEE-Sponsored World Conf. Futur. Trends Res. Innov. Soc. Welfare (WCFTR’16), IEEE, 2016. [Google Scholar]
- Ranjan and M. Bhonsle, “Advanced Techniques to Share & Protect Cloud Data using Multilayer Steganography and Cryptography,” 2016 Int. Conf. Autom. Control Dyn. Optim. Tech. (ICACDOT), IEEE, pp. 35–41, 2016. [CrossRef] [Google Scholar]
- S. S. Khan and P. S. Teja, “Novel Data Storage and Retrieval in Cloud Database by Using Frequent Access Node Encryption,” 2014 IEEE Int. Conf. Contemp. Comput. Informatics (IC3I), pp. 353–356. [Google Scholar]
- S. Khan, S. Parkinson, and A. Crompton, “A Multi-Layered Cloud Protection Framework,” UCC Companion, 2017. [Google Scholar]
- S. M. Abduljalil, O. Hegazy, and E. E. Hassanein, “A Novel Approach for Handling Security in Cloud Computing Services,” Int. J. Comput. Appl. (IJCA), vol. 69, no. 5, pp. 9–14, 2013. [Google Scholar]
- D. M. R. and P. Kumar, “To Implement a Multi-Level Security in Cloud Computing Using a Cryptographic Novel Approach.” [Google Scholar]
- J. K. Wang and X. Jia, “Data Security and Authentication in Hybrid Cloud Computing Model,” IEEE Global High Tech Congr. Electron., pp. 117–120, 2012. [CrossRef] [Google Scholar]
- H. J. Muhasin, R. Atan, M. A. Jabar, and S. A. Abdullah, “Cloud Computing Sensitive Data Protection using Multi-Layered Approach,” ICSIT, IEEE, pp. 69–73, 2016. [Google Scholar]
- S. Lolage, H. Mangtani, K. Dongare, A. Labade, and S. Pachouly, “A Time-Specified Ciphertext-Policy Attribute-Based Encryption with Circuit’s Technique in Cloud Computing,” Int. J. Innov. Res. Sci. Eng. Technol. (IJIRSET), vol. 7, pp. 3712–3719, 2018. [Google Scholar]
- Nalini and R. G. Suresh, “The Service of Trusted Third Party in Multiple Public Clouds in Dual Encryption Security Mechanism,” Int. J. Pure Appl. Math. (IJPAM), vol. 119, no. 12, pp. 10847–10856, 2018. [Google Scholar]
- S. S. Patil and B. R. Solunke, “Literature Review on Efficient and Revocable Data Access Control Scheme for Multi-Authority Cloud Storage Systems,” Int. J. Mod. Trends Eng. Res. (IJMTER), vol. 2, pp. 205–208, 2015. [Google Scholar]
- Y. Zhu, H. Hu, G. Ahn, M. Yu, and H. Zhao, “Comparison-Based Encryption for Fine-Grained Access Control in Clouds,” pp. 105–116. [Google Scholar]
- S. Kumar, N. Rajya Lakshmi, and B. Balamurugan, “Enhanced Attribute-Based Encryption for Cloud Computing,” Int. Conf. Inf. Commun. Technol. (ICICT), pp. 689–696, 2014. [Google Scholar]
- M. Sonia, Lakshmi, C.B.N., Hussain, S.J., Swarupa, M.L., N. Rajeswaran (2024). Android Malware Detection Using Genetic Algorithm Based Optimized Feature Selection and Machine Learning. In: Gunjan, V.K., Kumar, A., Zurada, J.M., Singh, S.N. (eds) Computational Intelligence in Machine Learning. ICCIML 2022. Lecture Notes in Electrical Engineering, vol 1106. Springer, Singapore. https://doi.org/10.1007/978-981-99-7954-7_19. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.