Open Access
Issue
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
Article Number 02015
Number of page(s) 12
Section Green Computing
DOI https://doi.org/10.1051/e3sconf/202561602015
Published online 24 February 2025
  1. D. Bardou, K. Zhang and S. Mohammadahmad, Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks, IEEE Access, VOLUME 6, pp. 24680–24693. (2018) [CrossRef] [Google Scholar]
  2. M. C. Chun. (2018). Breast Cancer: Symptoms, Risk Factors, and Treatment, Medical News Today. Accessed: Mar. 10. [Online]. Available: https://www.medicalnewstoday.com/articles/37136.php (2018) [Google Scholar]
  3. J. Joy, E. Penhoet, and D. Petitti, Saving Womens Lives. Washington, D.C., USA: National Academies Press, (2005) [Google Scholar]
  4. Łukasiewicz S., Czeczelewski M., Forma A., Baj J., Sitarz R., Stanisławek A Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers 13(17):4287 (2021) [CrossRef] [PubMed] [Google Scholar]
  5. L. Xie, Y. Kong, R. Wang, H. Yan and M. Li, Dynamic and Programmable RNA N6-Methyladenosine (m6A) Modification in Mammalian Cells, Cell, vol. 184, no. 1, pp. 1–16, (2021) [Google Scholar]
  6. Sartor H., Borgquist S., Hartman L., Olsson Å., Jawdat F., Zackrisson S. Do mammographic tumor features in breast cancer relate to breast density and invasiveness, tumor size, and axillary lymph node involvement? Acta Radiol; 56: 536–544. (2015) [CrossRef] [PubMed] [Google Scholar]
  7. Baré M., Torà N., Salas D., et al. Mammographic and clinical characteristics of different phenotypes of screen-detected and interval breast cancers in a nationwide screening program. Breast Cancer Res Treat; 154: 403–415. (2015) [CrossRef] [PubMed] [Google Scholar]
  8. Sturesdotter L., Sandsveden M., Johnson K., Larsson A.-M., Zackrisson S., Sartor H. Mammographic tumour appearance is related to clinicopathological factors and surrogate molecular breast cancer subtype. Sci Rep; 10: 20814. (2020) [CrossRef] [Google Scholar]
  9. Hodkinson A., Zhou A., Johnson J., Geraghty K., Riley R., Zhou A., Panagopoulou E., Chew-Graham C.A., Peters D., Esmail A. et al. Associations of physician burnout with career engagement and quality of patient care: systematic review and metaanalysis. BMJ 378:e070442 (2022) [CrossRef] [PubMed] [Google Scholar]
  10. L. He, L. R. Long, S. Antani, and G. Thoma, Computer assisted diag nosis in histopathology, Sequence Genome Anal., Methods Appl., pp. 271–287 (2010) [Google Scholar]
  11. Majumdar S., Pramanik P., Sarkar R. Gamma function-based ensemble of CNN models for breast cancer detection in histopathology images. Expert Syst Appl 213:119022 (2023) [CrossRef] [Google Scholar]
  12. Shen T., Wang J., Gou C., Wang F.-Y. Hierarchical fused model with deep learning and type-2 fuzzy learning for breast cancer diagnosis. IEEE Trans Fuzzy Syst 28(12):3204–3218 (2020) [CrossRef] [Google Scholar]
  13. Prakash S.S., Visakha K. Breast cancer malignancy prediction using deep learning neural networks. In: 2020 second international conference on inventive research in computing applications (ICIRCA). IEEE, pp 88–92 (2020) [Google Scholar]
  14. Houssein E.H., Emam M.M., Ali A.A. An optimized deep learning architecture for breast cancer diagnosis based on improved marine predator’s algorithm. Neural Comput Appl 34(20):18015–18033 (2022) [CrossRef] [PubMed] [Google Scholar]
  15. Desai M., Shah M. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and convolutional neural network (cnn). Clin eHealth 4:1–11 (2021) [CrossRef] [Google Scholar]
  16. Sannasi Chakravarthy S., Bharanidharan N., Rajaguru H. Multi-deep CNN based experimentations for early diagnosis of breast cancer. IETE J Res 2022:1–16 (2022) [Google Scholar]
  17. Li Y.C., Zhou Y., Bhujwalla Z.M., Song X., Liu G., van Zijl P.C., Yadav NN Deep learning-based classification of preclinical breast cancer tumor models using chemical exchange saturation transfer magnetic resonance imaging. NMR Biomed 35(2):4626 (2022) [CrossRef] [Google Scholar]
  18. Wang X., Ahmad I., Javeed D., Zaidi S.A., Alotaibi F.M., Ghoneim M.E., Daradkeh Y.I., Asghar J., Eldin E.T. Intelligent hybrid deep learning model for breast cancer detection. Electronics 11(17):2767 (2022) [CrossRef] [Google Scholar]
  19. Awotunde J.B., Panigrahi R., Khandelwal B., Garg A., Bhoi AK Breast cancer diagnosis based on hybrid rule-based feature selection with deep learning algorithm. Res Biomed Eng 2023:1–13 (2023) [Google Scholar]
  20. Mokni R., Haoues M Cadnet157 model: fine-tuned resnet152 model for breast cancer diagnosis from mammography images. Neural Comput Appl 2022:1–24 (2022) [Google Scholar]
  21. Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R. et al. CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics, 10(20), 2470. (2021) [CrossRef] [Google Scholar]
  22. Ji, Y., Zhang, H., Zhang, Z., Liu, M. CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances. Information Sciences, 546, 835–857. (2021) [CrossRef] [Google Scholar]
  23. Chen, Y., Wang, Y., Dong, Z., Su, J., Han, Z. et al. 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model. Energy Conversion and Management, 244, 114451 (2021) [CrossRef] [Google Scholar]
  24. Bie C., Li Y., Zhou Y., Bhujwalla Z.M., Song X., Liu G., van Zijl P.C., Yadav NN Deep learning-based classification of preclinical breast cancer tumor models using chemical exchange saturation transfer magnetic resonance imaging. NMR Biomed 35(2):4626 (2022) [CrossRef] [Google Scholar]
  25. Sumathi, R., Vasudevan, V. MRI breast image segmentation using artificial bee colony optimization with fuzzy clustering and CNN classifier. In: Intelligent systems and sustainable computing pp. 303–311. Hyderabad, India, Springer. (2022) [CrossRef] [Google Scholar]
  26. Guo, Y. Y., Huang, Y. H., Wang, Y., Huang, J., Lai, Q. Q. et al. Breast MRI tumor automatic segmentation and triple-negative breast cancer discrimination algorithm based on deep learning. Computational and Mathematical Methods in Medicine, (2022) [PubMed] [Google Scholar]
  27. Gonçalves, C. B., de Souza, J. R., Fernandes, H. CNN architecture optimization using bio-inspired algorithms for breast cancer detection in infrared images. Computers in Biology and Medicine, 105205. (2022) [CrossRef] [PubMed] [Google Scholar]
  28. Huang, J., Mei, L., Long, M., Liu, Y., Sun, W. et al. BM-Net: CNN-based MobileNet-V3 and bilinear structure for breast cancer detection in whole slide images. Bioengineering, 9(6), 261. (2022) [CrossRef] [PubMed] [Google Scholar]
  29. Mahbub, T. N., Yousuf, M. A., Uddin, M. N. A modified CNN andfuzzy AHP based breast cancer stage detection system. 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), pp. 1–6. Gazipur, Bangladesh, IEEE. (2022) [Google Scholar]
  30. Joseph A.A., Abdullahi M., Junaidu S.B., Ibrahim H.H., Chiroma H. Improved multiclassification of breast cancer histopathological images using handcraftedfeatures and deep neural network (dense layer). Intell Syst Appl 14:200066 (2022) [Google Scholar]
  31. Taheri S., Golrizkhatami Z. (2022) Magnification -specific and magnificationindependent classification of breast cancer histopathological image using deep learning approaches. Signal Image Video Process: 1–9 (2022) [Google Scholar]
  32. Luo Y., Huang Q., Li X. Segmentation information with attention integration for classification of breast tumor in ultrasound image. Pattern Recogn 124:108427 (2022) [CrossRef] [Google Scholar]
  33. Podda A.S., Balia R., Barra S., Carta S., Fenu G., Piano L. Fully-automated deep learning pipeline for segmentation and classification of breast ultrasound images. J Comput Sci 63:101816 (2022) [CrossRef] [Google Scholar]
  34. Nagalakshmi T Breast cancer semantic segmentation for accurate breast cancer detection with an ensemble deep neural network. Neural Process Lett 54(6):5185–5198 (2022) [CrossRef] [Google Scholar]
  35. Yurdusev A.A., Adem K., Hekim M. Detection and classification of microcalcifications in mammograms images using difference filter and yolov4 deep learning model. Biomed Signal Process Control 80:104360 (2023) [CrossRef] [Google Scholar]
  36. Atrey, K., Singh, B. K., Roy, A., Bodhey, N. K. Real-time automated segmentation of breast lesions using CNN-based deep learning paradigm: Investigation on mammogram and ultrasound. International Journal of Imaging Systems and Technology, 32, 1084–1100 (2021) [Google Scholar]
  37. Irfan, R., Almazroi, A. A., Rauf, H. T., Damasevivcius, R., Nasr, E. A. et al. Dilated semantic ‘ segmentation for breast ultrasonic lesion detection using parallel feature fusion. Diagnostics, 11(7), 1212. (2021) [CrossRef] [PubMed] [Google Scholar]
  38. Su, H., Liu, F., Xie, Y., Xing, F., Meyyappan, S. et al. Region segmentation in histopathological breast cancer images using deep convolutional neural network. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 55–58. Brooklyn, N.Y., USA, IEEE. (2015) [CrossRef] [Google Scholar]
  39. He, S., Ruan, J., Long, Y., Wang, J., Wu, C. et al. Combining deep learning with traditional features for classification and segmentation of pathological images of breast cancer. 2018 11th International Symposium on Computational Intelligence and Design (ISCID), vol. 1, pp. 3–6. Zhejiang University, China, IEEE. (2018) [CrossRef] [Google Scholar]
  40. Soltani, H., Amroune, M., Bendib, I., Haouam, M. Y. Breast cancer lesion detection and segmentation based on mask R-CNN. 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI), pp. 1–6. Tebessa, Algeria, IEEE. (2021) [Google Scholar]
  41. Min, H., Wilson, D., Huang, Y., Liu, S., Crozier, S. et al. Fully automatic computer- aided mass detection and segmentation via pseudo-color mammograms and mask R-CNN. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1111–1115. Iowa City, USA, IEEE. (2020) [CrossRef] [Google Scholar]
  42. Arora, R., Raman, B. A deep neural CNN model with CRF for breast mass segmentation in mammograms. 2021 29th European Signal Processing Conference (EUSIPCO), pp. 1311–1315. Dublin, Ireland, IEEE (2021) [CrossRef] [Google Scholar]
  43. Sharma, R., Sharma, J. B., Maheshwari, R., Agarwal, P. Thermogram adaptive efficient model for breast cancer detection using fractional derivative mask and hybrid feature set in the IoT environment. Computer Modeling in Engineering & Sciences, 130(2), 923–947. https://doi.org/10.32604/cmes.2022.016065 (2022) [CrossRef] [Google Scholar]
  44. Zainudin, Z., Shamsuddin, S. M., Hasan, S. Deep layer CNN architecture for breast cancer histopathology image detection. International Conference on Advanced Machine Learning Technologies and Applications, pp. 43–51. Cairo, Egypt, Springer. (2019) [Google Scholar]
  45. Wu, B., Kausar, T., Xiao, Q., Wang, M., Wang, W. et al. FF-CNN: An efficient deep neural network for mitosis detection in breast cancer histological images. Annual Conference on Medical Image Understanding and Analysis, pp. 249–260. John McIntyre Centre, Pollock Halls, Edinburgh, Springer (2017) [Google Scholar]
  46. Hadush, S., Girmay, Y., Sinamo, A., Hagos, G. Breast cancer detection using convolutional neural networks. arXiv preprint arXiv:2003.07911. (2020) [Google Scholar]
  47. Huang, J., Mei, L., Long, M., Liu, Y., Sun, W. et al. BM-Net: CNN-based MobileNet-V3 and bilinear structure for breast cancer detection in whole slide images. Bioengineering, 9(6), 261. (2022) [CrossRef] [PubMed] [Google Scholar]
  48. Mahbub, T. N., Yousuf, M. A., Uddin, M. N. A modified CNN and fuzzy AHP based breast cancer stage detection system. 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), pp. 1–6. Gazipur, Bangladesh, IEEE. (2022) [Google Scholar]
  49. Gour, M., Jain, S., Sunil Kumar, T. Residual learning-based CNN for breast cancer histopathological image classification. International Journal of Imaging Systems and Technology, 30 (3), 621–635 (2020) [CrossRef] [Google Scholar]
  50. Wang, Y., Sun, L., Ma, K., Fang, J. Breast cancer microscope image classification based on CNN with image deformation. International Conference Image Analysis and Recognition, pp. 845–852. Póvoa de Varzim, Portugal, Springer. (2018) [Google Scholar]
  51. Saikia, A. R., Bora, K., Mahanta, L. B., Das, A. K. Comparative assessment of CNN architectures for classification of breast FNAC images. Tissue and Cell, 57, 8–14. (2019) [CrossRef] [Google Scholar]
  52. Mewada, H. K., Patel, A. V., Hassaballah, M., Alkinani, M. H., Mahant, K. Spectral-spatial features integrated convolution neural network for breast cancer classification. Sensors, 20 (17), 4747 (2020) [CrossRef] [PubMed] [Google Scholar]
  53. Lotter, W., Sorensen, G., Cox, D. A multi-scale CNN and curriculum learning strategy for mammogram classification. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, pp. 169–177. Québec City, Q.C., Canada, Springer. (2017) [Google Scholar]
  54. Vidyarthi, A., Shad, J., Sharma, S., Agarwal, P. Classification ofbreast microscopic imaging using hybrid CLAHE-CNN deep architecture. 2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–5. Noida, India, IEEE. (2019) [Google Scholar]
  55. Hijab, A., Rushdi, M. A., Gomaa, M. M., Eldeib, A. Breast cancer classification in ultrasound images using transfer learning. 2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME), pp. 1–4. Tripoli, Lebanon, IEEE (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.