Open Access
Issue
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
Article Number 03019
Number of page(s) 8
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202561603019
Published online 24 February 2025
  1. Reddy, K. V. B., Shankar, K. H., Gudipadu, V., & Mishra, R. R. Numerical and experimental studies on dissimilar joining of Hastelloy C-276 and SS-316L using microwave hybrid heating at 2.45 GHz. Materials Science and Technology. (2024) https://doi.Org/10.1177/02670836241259848 [Google Scholar]
  2. Devaraj, J., Ziout, A., & Qudeiri, J. E. A. Dissimilar Non-Ferrous Metal Welding: An Insight on Experimental and Numerical Analysis. Metals, 11, 1486 (2021). https://doi.org/10.3390/met11091486 [CrossRef] [Google Scholar]
  3. Das, A., Kumar, A., Shankhwar, K., & Gubeljak, N. A review of heat source and resulting temperature distribution in arc welding. Journal of Thermal Analysis and Calorimetry, 147, 12975–13010 (2022). https://doi.org/10.1007/s10973-022-11589-w [CrossRef] [Google Scholar]
  4. Alomairi, B. S., Driss, Z., & Abood, A. N. Microstructural evaluation of welded joints of ASTM Mar-M247 superalloy using ERNiCrMo-3 filler alloy. Materia (Rio de Janeiro), 29, (2024). https://doi.org/10.1590/1517-7076-RMAT-2023-0219 [Google Scholar]
  5. Devendranath Ramkumar, K., Arivazhagan, N., & Narayanan, S. Effect of filler materials on the performance of gas tungsten arc welded AISI 304 and Monel 400. Materials and Design, 40, 70–79 (2012). https://doi.org/10.1016/i.matdes.2012.03.024 [CrossRef] [Google Scholar]
  6. Guzey, B. N., & Irsel. G. Investigation of mechanical and microstructural properties in joining dissimilar P355GH and stainless 316L steels by TIG welding process. International Journal of Pressure Vessels and Piping, 205, 104965 (2023). https://doi.org/10.1016/J.IJPVP.2023.104965 [CrossRef] [Google Scholar]
  7. Kumar, A., Pandey, S. M., Sirohi, S., Fydrych, D., & Pandey, C. P92 steel and inconel 617 alloy welds joint produced using ERNiCr-3 filler with GTAW process: Solidification mechanism, microstructure, mechanical properties and residual stresses. Heliyon, 9(2023). https://doi.Org/10.1016/j.heliyon.2023.e18959 [Google Scholar]
  8. Liu, S., Wu, Z., Zhou, W., Zhou, H., Zhang, K., Yin, D., & Qiu, Y. A review of welding simulation methods for large components. Progress in Natural Science: Materials International. (2023). https://doi.Org/10.1016/j.pnsc.2023.12.004 [Google Scholar]
  9. Efa, D. A. Enhancing the efficiency of laser beam welding: multi-objective parametric optimization of dissimilar materials using finite element analysis. The International Journal of Advanced Manufacturing Technology, 1, 17 (2024). https://doi.org/10.1007/s00170-024-13985-y [Google Scholar]
  10. Bassey, M., Offiong, U., & Ikpe, A. Finite Element Simulation for ThermoMechanical Transient Behavior of Mild Steel Plate Agglutinated by Gas Tungsten Arc Welding (GTAW) Technique. Journal of Materials Engineering, Structures and Computation, 2, (2023). https://doi.org/10.5281/zenodo.8306756 [Google Scholar]
  11. Kalita, K., Burande, D., Ghadai, R. K., & Chakraborty, S. Finite element modelling, predictive modelling and optimization of metal inert gas, tungsten inert gas and friction stir welding processes: a comprehensive review. Archives of Computational Methods in Engineering, 30, 271–299 (2023). https://doi.org/10.1007/s11831-022-09797-6 [CrossRef] [Google Scholar]
  12. Fu, G., Gu, J., Lourenco, M. I., Duan, M., & Estefen, S. F. (2015). Parameter determination of double-ellipsoidal heat source model and its application in the multi-pass welding process. Ships and Offshore Structures, 10(2), 204–217. https://doi.org/10.1080/17445302.2014.937059 [CrossRef] [Google Scholar]
  13. Vukojevic, N., Hadzikadunic, F., & Bajtarevic-Jelec, A. Application of Finite Element Analysis for Thermal Cycle Prediction in Butt Welded Plates. TehniCki vjesnik, 31, 837–842 (2024). https://doi.org/10.17559/TV-20230623000757 [Google Scholar]
  14. Koo, B. S. Thermo-Fluid-Coupled Analysis of Double Fillet Welds on Tube Membrane Panels During Submerged Arc Welding. Journal of Pressure Vessel Technology, 1, 18 (2024). https://doi.org/10.1115/1.4064578 [Google Scholar]
  15. Kumar, A. S., Sharma, S. K., & Shukla, A. K. Microstructural, Mechanical, and Thermal Analysis of SS316L Weldment for Marine Engineering Application. Journal of Materials Engineering and Performance, 1, 14 (2023). https://doi.org/10.1007/s11665-023-08906-1 [Google Scholar]
  16. Hamada, A., Khosravifard, A., Ali, M., Ghosh, S., Jaskari, M., Hietala, M.,… & Newishy, M. Micromechanical analysis and finite element modelling of laser- welded 5-mm-thick dissimilar joints between 316L stainless steel and low-alloyed ultra-high-strength steel. Materials Science and Engineering: A, 882, 145442 (2023). https://doi.org/10.1016/j.msea.2023.145442 [CrossRef] [Google Scholar]
  17. Han, Y. Multiphysics Study of Thermal Profiles and Residual Stress in Welding. Materials, 17, 886 (2024). https://doi.org/10.3390/ma17040886 [CrossRef] [PubMed] [Google Scholar]
  18. Balram, Y., & Rajyalakshmi, G. Thermal fields and residual stresses analysis in TIG weldments of SS 316 and Monel 400 by numerical simulation and experimentation. Materials Research Express, 6(2019). https://doi.org/10.1088/2053-1591/ab23cf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.