Open Access
Issue |
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
|
|
---|---|---|
Article Number | 03029 | |
Number of page(s) | 14 | |
Section | Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202561603029 | |
Published online | 24 February 2025 |
- S. Choudhury, A comprehensive review on issues, investigations, control and protection trends, technical challenges and future directions for Microgrid technology, Int. Trans. Electr. Energy Syst. 30 (9) (2020) e12446. [CrossRef] [Google Scholar]
- I.E. Series, Microgrids and active distribution networks, Inst. Eng. Technol. (2009). [Google Scholar]
- O. Hafez, K. Bhattacharya, Optimal planning and design of a renewable energy-based supply system for microgrids, Renew. Energy 45 (2012) 7–15. [CrossRef] [Google Scholar]
- H. Bevrani, B. François, T. Ise, Microgrid Dynamics and Control, John Wiley & Sons, 2017. [CrossRef] [Google Scholar]
- D.E. Olivares, A. Mehrizi-Sani, A.H. Etemadi, C.A. Cañizares, ~ R. Iravani, M. Kazerani, A.H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. PalmaBehnke, Jim'enez-Est'evez GA, Trends in microgrid control, IEEE Trans. Smart. Grid. 5 (4) (2014) 1905–1919. [CrossRef] [Google Scholar]
- H. Jiayi, J. Chuanwen, X. Rong, A review on distributed energy resources and MicroGrid, Renewable Sustainable Energy Rev. 12 (9) (2008) 2472–2483. [CrossRef] [Google Scholar]
- N. Pogaku, M. Prodanovic, T.C. Green, Modeling, analysis and testing of autonomous operation of an inverter-based microgrid, IEEE Trans. Power Electron. 22 (2) (2007) 613–625. [CrossRef] [Google Scholar]
- R. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromsom, A. S. Meliopoulous, R. Yinger, J. Eto, Integration of Distributed Energy resources. The CERTS Microgrid Concept, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States), (2002). [Google Scholar]
- F. Katiraei, M.R. Iravani, Power management strategies for a microgrid with multiple distributed generation units, IEEE Trans. Power Syst. 21 (4) 1821–1831 (2006). [CrossRef] [Google Scholar]
- M.T. Ozog, Inventor; Integral Analytics Inc, assignee. Optimization of microgrid energy use and distribution. United States patent US 8,364,609, (2013). [Google Scholar]
- P.C. Loh, D. Li, Y.K. Chai, F. Blaabjerg, Autonomous operation of hybrid microgrid with AC and DC subgrids, IEEE Trans. Power. Electron. 28 (5) 2214–2223. (2012). [Google Scholar]
- P.O. Kriett, M. Salani, Optimal control of a residential microgrid, Energy 42 (1), 321–330 (2012). [CrossRef] [Google Scholar]
- R. Zamora, A.K. Srivastava, Controls for microgrids with storage: review, challenges, and research needs, Renewable Sustainable Energy Rev. 14 (7) 2009–2018, (2010). [CrossRef] [Google Scholar]
- A. Hirsch, Y. Parag, J. Guerrero, Microgrids: a review of technologies, key drivers, and outstanding issues, Renewable Sustainable Energy Rev. 90 402–411 (2018). [CrossRef] [Google Scholar]
- S. Khalid, B. Dwivedi, Power quality issues, problems, standards & their effects in industry with corrective means, Int. J. Adv. Eng. Technol. 1 (2), 1 (2011). [Google Scholar]
- Owusu PA and Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng; 3: 1167990. Epub ahead of print 31 December (2016). [CrossRef] [Google Scholar]
- Ukoba KO, Eloka-Eboka AC and Inambao FL. Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renewable Sustainable Energy Rev, 82, 2900–2915 (2018). [CrossRef] [Google Scholar]
- Olatunji KO and Madyira DM. Optimization of biomethane yield of Xyris capensis grass using oxidative pretreatment. Energies, 16: 3977 (2023). [CrossRef] [Google Scholar]
- Rohrig K, Berkhout V, Callies D, et al. Powering the 21st century by wind energy - Options, facts, figures. Appl Phys Rev., 6:031303. doi: 10.1063/1.5089877/997348, (2019). [CrossRef] [Google Scholar]
- M.J. Afroni, D. Sutanto, D. Stirling, Analysis of nonstationary power-quality waveforms using iterative Hilbert Huang transform and SAX algorithm, IEEE Trans. Power Deliv. 28 (4) 2134–2144 (2013). [CrossRef] [Google Scholar]
- M. Valtierra-Rodriguez, Jesus de, R. Romero-Troncoso, R.A. Osornio-Rios, A. Garcia-Perez, Detection and classification of single and combined power quality disturbances using neural networks, IEEE Trans. Ind. Electron. 61 (5) 2473–2482 (2013). [Google Scholar]
- B. Biswal, M. Biswal, S. Mishra, R. Jalaja, Automatic classification of power quality events using balanced neural tree, IEEE Trans. Ind. Electron. 61 (1) 521–530 (2013). [Google Scholar]
- B. Singh, A. Chandra, K. Al-Haddad, Power Quality: Problems and Mitigation Techniques, John Wiley & Sons, (2014). [Google Scholar]
- A. Baitha, N. Gupta, A comparative analysis of passive filters for power quality improvement, in 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy), IEEE, pp. 327–332 (2015). [CrossRef] [Google Scholar]
- J. Gong, D. Li, T. Wang, W. Pan, X. Ding, A comprehensive review of improving power quality using active power filters, Electr. Power Syst. Res. 199, 107389 (2021). [CrossRef] [Google Scholar]
- L. Moran, J. Dixon, M. Torres, 41-Active Power Filters, Editor (s): Muhammad H. Rashid. Power Electronics Handbook (Fourth Edition), Butterworth-Heinemann, pp. 1341–1379, 2018. [CrossRef] [Google Scholar]
- M.S. Mahmoud, N.M. Alyazidi, M.I. Abouheaf, Adaptive intelligent techniques for microgrid control systems: a survey, Int. J. Electr. Power Energy Syst. 90, 292–305 (2017). [CrossRef] [Google Scholar]
- Yousef LA, Yousef H and Rocha-Meneses L. Artificial intelligence for management of variable renewable energy systems: a review of status and future directions. Energies; 16: 8057, (2023). [CrossRef] [Google Scholar]
- Rajitha, M., & Ram, A. R. (2024). An overview of Artificial Intelligence applications to electrical power systems and DC microgrids. In E3S Web of Conferences (Vol. 547, p. 01002). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
- P. Boza and T. Evgeniou, Artificial intelligence to support the integration of variable renewable energy sources to the power system, Appl Energy, 290: 116754 (2021). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.