Open Access
Issue
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
Article Number 03040
Number of page(s) 10
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202561603040
Published online 24 February 2025
  1. Y. Zhou, “Worldwide carbon neutrality transition? Energy efficiency, renewable, carbon trading and advanced energy policies,” Energy Reviews, vol. 2, no. 2, p. 100026, (2023). [CrossRef] [Google Scholar]
  2. H. Geller, Energy revolution: policies for a sustainable future. Energy revolution: policies for a sustainable future, 2012. [Google Scholar]
  3. M. Dallapiccola, G. Barchi, J. Adami, and D. Moser, “The role of flexibility in photovoltaic and battery optimal sizing towards a decarbonized residential sector,” Energies, vol. 14, no. 8, p. 2326, 2021. [CrossRef] [Google Scholar]
  4. A. B. van Groenou, H. Lovell, and E. Franklin, “Household decision-making for home batteries,” in Asia Pacific Solar Research Conference, pp. 4–6, (2018). [Google Scholar]
  5. W. N. Dunn, “Social network theory,” Knowledge, vol. 4, no. 3, pp. 453–461, (1983). [CrossRef] [Google Scholar]
  6. N. Mohandes, A. Sanfilippo, and M. Al Fakhri, “Modeling residential adoption of solar energy in the Arabian Gulf Region,” Renewable energy, vol. 131, pp. 381–389, (2019). [CrossRef] [Google Scholar]
  7. M. Hossain, A. Wadi Al-Fatlawi, L. Kumar, Y. R. Fang, and M. E. H. Assad, “Solar PV high-penetration scenario: an overview of the global PV power status and future growth,” Energy Systems, pp. 1–57, (2024). [Google Scholar]
  8. S. Rahman et al., “Analysis of power grid voltage stability with high penetration of solar PV systems,” IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2245–2257, (2021). [CrossRef] [Google Scholar]
  9. G. Tarde and E. Rogers, “DIFFUSION OF INNOVATIONS,” by Wikibooks contributors, p. 87. [Google Scholar]
  10. E. M. Rogers, A. Singhal, and M. M. Quinlan, “Diffusion of innovations,” in An integrated approach to communication theory and research: Routledge, pp. 432–448, (2014). [Google Scholar]
  11. G. Simpson and J. Clifton, “Testing diffusion of innovations theory with data: financial incentives, early adopters, and distributed solar energy in Australia,” Energy Research & Social Science, vol. 29, pp. 12–22, (2017). [CrossRef] [Google Scholar]
  12. J. M. Eder, C. F. Mutsaerts, and P. Sriwannawit, “Mini-grids and renewable energy in rural Africa: How diffusion theory explains adoption of electricity in Uganda,” Energy Research & Social Science, vol. 5, pp. 45–54, (2015). [CrossRef] [Google Scholar]
  13. M. Alipour, E. Irannezhad, R. A. Stewart, and O. Sahin, “Exploring residential solar PV and battery energy storage adoption motivations and barriers in a mature PV market,” Renewable Energy, vol. 190, pp. 684–698, (2022), doi: 10.1016/j.renene.2022.03.040. [CrossRef] [Google Scholar]
  14. S. Agnew and P. Dargusch, “Consumer preferences for household-level battery energy storage,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 609–617, (2017). [CrossRef] [Google Scholar]
  15. R. L. Fares and M. E. Webber, “The impacts of storing solar energy in the home to reduce reliance on the utility,” Nature Energy, vol. 2, no. 2, pp. 1–10, (2017). [CrossRef] [Google Scholar]
  16. S. Gordon-Wilson and D. Godefroit-Winkel. “Consumer agency in sustainable consumption behaviour and environmentally imposed constraints: A multi-level approach,” Business Strategy and the Environment, (2024). [Google Scholar]
  17. M. C. Argyrou, P. Christodoulides, and S. A. Kalogirou, “Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 804–821, (2018). [CrossRef] [Google Scholar]
  18. R. Esplin and T. Nelson, “Redirecting solar feed in tariffs to residential battery storage: Would it be worth it?,” Economic Analysis and Policy, vol. 73, pp. 373–389, (2022). [CrossRef] [Google Scholar]
  19. J. Hoppmann, J. Volland, T. S. Schmidt, and V. H. Hoffmann, “The economic viability of battery storage for residential solar photovoltaic systems-A review and a simulation model,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 1101–1118, (2014). [CrossRef] [Google Scholar]
  20. S. Agnew and P. Dargusch, “Effect of residential solar and storage on centralized electricity supply systems,” Nature Climate Change, vol. 5, no. 4, pp. 315–318, (2015). [CrossRef] [Google Scholar]
  21. V. Rai, D. C. Reeves, and R. Margolis, “Overcoming barriers and uncertainties in the adoption of residential solar PV,” Renewable Energy, vol. 89, pp. 498–505, (2016), doi: 10.1016/j.renene.2015.11.080. [CrossRef] [Google Scholar]
  22. X. Yu, R. Chen, L. Gan, H. Li, and L. Chen, “Battery safety: From lithium-ion to solid-state batteries,” Engineering, vol. 21, pp. 9–14, (2023). [CrossRef] [Google Scholar]
  23. R. U. Rani, G. Divya, M. L. Swarupa and K. Navaneetha, “IoT Based Battery Monitoring System for Electric Vehicle using ESP32,” 2023 Second International Conference On Smart Technologies For Smart Nation (SmartTechCon), Singapore, Singapore, 2023, pp. 1491–1503, 10.1109/SmartTechCon57526.2023.10391772. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.