Open Access
Issue
E3S Web Conf.
Volume 618, 2025
6th International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2024)
Article Number 02007
Number of page(s) 5
Section Analysis of Construction Engineering and Material Characteristics
DOI https://doi.org/10.1051/e3sconf/202561802007
Published online 27 February 2025
  1. Lv Y, Li J, Ye H, et al. (2019)Bioleaching of s ilicon in electrolytic manganese residue using single and mixed silicate bacteria.,42: 1819-1828. https://doi.org/10.1007/s00449-019-02178-7 [Google Scholar]
  2. Tian Y, Shu J, Chen M, et al. (2019)Manganese and ammonia nitrogen recovery from electrolyti c manganeseresidue by electric field enhanced le aching, J. Cleaner Prod. 236 117708. https://doi. org/10.1016/j.jclepro.2019.117708 [CrossRef] [Google Scholar]
  3. Wang P, Jiang X,Chen M, et al. (2025)Anti-seep age reinforcement property and pollution control effect of bio-cemented fracture zone in electrolyt ic manganese residue dump. Science of The Tota l Environment 958: 177928. https://doi.org/10.101 6/j.scitotenv.2024.177928 [CrossRef] [Google Scholar]
  4. Zhou C, Du B, Wang N, et al. (2014) Preparati on and strength property of autoclaved bricksfro m electrolytic manganese residue, J. Cleaner Pro d. 84 707–714. https://doi.org/10.1016/j.jclepro.20 14.01.052 [CrossRef] [Google Scholar]
  5. Yang L I, Zhang G, Jun Y, et al. (2023) A revi ew on damage mechanism of ultra-high perform ance concrete under loading and erosion, Mater. Today Commun. 35 106258. https://doi.org/10.1 016/j.mtcomm.2023.106258 [Google Scholar]
  6. Li Y, Zhang G, Yang J, et al. (2022) Chloride i on transport properties in lightweight ultra-high-p erformance concrete with different lightweight ag gregate particle sizes, Materials 15 (19) 6626. https://doi.org/10.3390/ma15196626 [CrossRef] [PubMed] [Google Scholar]
  7. Paul A, Rashidi M, Kim J, et al. (2022)The impact of sulfate- and sulfide-bearing sand on dela yed ettringite formation, Cem Concr Compos. 125 104323. https://doi.org/10.1016/j.cemconcomp.2021.104323 [CrossRef] [Google Scholar]
  8. Müllauer W. (2013)Sulfate attack expansion mechanisms.Cement and concrete research 52: 208-21 5. https://doi.org/10.1016/j.cemconres.2013.07.005 [CrossRef] [Google Scholar]
  9. Li Y, Yang F L, Zhang G Z. (2023)Synergistic effects of sustained loading and sulfate attack o n the damage of UHPC based on lightweight ag gregate, Constr. Build.Mater. 374 130929. https:// doi.org/10.1016/j.conbuildmat.2023.130929 [CrossRef] [Google Scholar]
  10. Liu W, Liu X, Zhang L. Rheology M. (2024)microstructure and durability of low-carbon cementi tious materials based on circulating fluidized bed fly ash: a comprehensive review, Constr. Build. Mater. 411 134688. https://doi.org/10.1016/j.con buildmat.2023.134688 [CrossRef] [Google Scholar]
  11. Jagadisha H M, Prashant S, Pandit P, et al. (2024)Sulfate resistance of alkali-activated flyash-sla g-lime concrete: comparative study of drying-wet ting cycles and conventional exposure. Materials Research Express 11.10: 105301. https://doi.org/1 0.1088/2053-1591/ad7fb9 [CrossRef] [Google Scholar]
  12. Fu Y, Qiao H, Feng Q, et al. (2024)Impact of desulphurized electrolytic manganese residue-assis ted cementitious materials on silicate cement hy dration and environmental safety assessment. Journal of Building Engineering: 109906. https://doi. org/10.1016/j.jobe.2024.109906 [Google Scholar]
  13. Standardization Administration of China. (2021)T est method for cement mortar strength (ISO met hod) : GB/T 17671-2021[S]. Beijing: China Stan dards DevelopmentAssociation,2021. https://kns.cnk i.net/kcms2/ [Google Scholar]
  14. Fu Y, Qiao H, Feng Q, et al. (2024)Effect of E lectrolytic Manganese Residue at Different Calci nation Temperatures on Hydration Characteristics and Microstructure of Cement Mortar[J]. Materia ls Today Communications, 40: 110196. https://do i.org/10.1016/j.mtcomm.2024.110196 [CrossRef] [Google Scholar]
  15. AQSIQ. (2009)Standard of test method for long- term performance and durability of ordinary con crete:GB/T 50082-2009 [S]. Beijing: Standards Press of China,2009. https://kns.cnki.net/kcms2/ [Google Scholar]
  16. Chen J, Zuo X B, Zou Y X, et al. (2018)Phase evolution and quantitative analysis of flyash-ce ment mortar in sulphate-chloride environment[J]. Materials Review, 38(22):161-167. https://doi.org/10.11896/c1db.23080011 [Google Scholar]
  17. Santhanam M, Cohen M D, Olek J. (2003)Mechanism of sulfate attack: a fresh look: Part 2. Pr oposed mechanisms, Cem. Concr. Res. 33 (3) 341–346. https://doi.org/10.1016/S0008-8846(02)00 958-4 [CrossRef] [Google Scholar]
  18. Chen Y, Wen Y, Song Z H, et al. (2024)Study on compressive strength of cement-based materia ls under sulfate and carbonate attack [J]. Concrete and Cement Products,(04):31-33+37.https://doi. org/10.19761/j.1000-4637.2024.04.031.04. [Google Scholar]
  19. Jin P, Hu Y, Shao J, et al. (2020)Influence of temperature on the structure of pore–fracture of s andstone[J]. Rock Mechanics and Rock Engineering,53: 1-12. https://doi.org/10.1007/s00603-019-0 1858-w [CrossRef] [Google Scholar]
  20. Wang D, Zhang G, Ding Q, et al. (2024)Micros tructural evolution and degradation mechanisms oftricalcium silicate and tricalcium aluminate co mposite pastes under sulfate exposure[J].Case St udies in Construction Materials, 21e04050-e0405 0. https://doi.org/10.1016/j.cscm.2024.e04050 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.