Open Access
Issue |
E3S Web Conf.
Volume 618, 2025
6th International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2024)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 5 | |
Section | Analysis of Construction Engineering and Material Characteristics | |
DOI | https://doi.org/10.1051/e3sconf/202561802013 | |
Published online | 27 February 2025 |
- Wang, Z.; Tan, Q.; Wen, X.; Su, H.; Fang, G.; Wang, H. Capacity optimization of retrofitting cascade hydropower plants with pumping stations for renewable energy integration: A case study. School of Management, China institute for Studies in Energy Policy, Xiamen University, Fujian, 361005, PR China. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China 2025, Vol.377, 124429, doi:10.1016/j.apenergy.2024.124429. [Google Scholar]
- Huang, L.; Zuo, S.; Yu, B.; Chen, S. Optimization of the earthwork excavation-filling balance and allocation for the upper reservoir of a pumped storage power station. Journal of Energy Storage 2024, Vol.83, 110722, doi:10.1016/j.est.2024.110722. [CrossRef] [Google Scholar]
- Yankelevsky, D.Z. The uniaxial compressive strength of concrete: revisited. National Building Research Institute, Faculty of Civil and Environmental. Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel 2024, Vol.57, 1-18, doi:10.1617/s11527-024-02422-x. [Google Scholar]
- Wan Zhang, J.G., Cuiping Ning, Ruifang Cheng, Ze Liu. Prediction of concrete compressive strength using a Deepforest-based model. Affiliations College of Architecture Engineering, Yangling Vocational & Technical College, Shaanxi, Yangling, 712100, Shaanxi, China. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, 712100 2024, Vol.14, 18918, doi:10.1038/s41598-024-69616-9. [Google Scholar]
- Miao, X.; Chen, B.; Zhao, Y. Prediction of compressive strength of glass powder concrete based on artificial intelligence. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China 2024, Vol.91, 109377, doi:10.1016/j.jobe.2024.109377. [Google Scholar]
- Thamboo, J.; Sathurshan, M.; Zahra, T. Reliable unit strength correlations to predict the compressive strength of grouted concrete masonry. National Building Research Institute, Faculty of Civil and Environmental. Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel 2024, Vol.57, 1-19, doi:10.1617/s11527-024-02417-8. [Google Scholar]
- Yu, G.; Zhu, S.; Xiang, Z. The Prediction of Pervious Concrete Compressive Strength Based on a Convolutional Neural Network. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China 2024, Vol.14, 907, doi:10.3390/buildings14040907. [Google Scholar]
- Jubori, D.S.A.; Nabilah, A.B.; Safiee, N.A.; Alias, A.H.; Nasir, N.A.M. Machine Learning Technique for the Prediction of Blended Concrete Compressive Strength. Dept. of Civil Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 2024, Vol.28, 817-835, doi:10.1007/s12205-024-0854-5. [Google Scholar]
- Taffese, W.Z.; Wally, G.B.; Magalhães, F.C.; Espinosa-Leal, L. Concrete aging factor prediction using machine learning. School of Research and Graduate Studies, Arcada University of Applied Sciences, Helsinki, Finland;Catholic University of Pelotas, Pelotas, RS, Brazil;Structures and Building Materials Laboratory (LEMCC), Federal Institute 2024, Vol.40, 109527, doi:10.1016/j.mtcomm.2024.109527. [Google Scholar]
- Tran, N.T.; Nguyen, D.H.; Tran, Q.T.; Le, H.V.; Nguyen, D.-L. Experimental study and machine learning based prediction of the compressive strength of geopolymer concrete. Ho Chi Minh City Univ Transport, Inst Civil Engn, Ho Chi Minh City, Vietnam.;Ho Chi Minh City Univ Transport, Res Grp CESD, Ho Chi Minh City, Vietnam.;Hanoi Univ Min & Geol, Fac Civil Engn, Dept Bldg & Construct Engn, Hanoi 2024, Vol.76, 723-737, doi:10.1680/jmacr.23.00144. [Google Scholar]
- Alavi, S.A.; Noel, M.; Moradi, F.; Layssi, H. Development of a machine learning model for on-site evaluation of concrete compressive strength by SonReb. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China 2024, Vol.82, 108328, doi:10.1016/j.jobe.2023.108328. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.