Open Access
Issue |
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 13 | |
Section | Smart Electronics for Sustainable Solutions | |
DOI | https://doi.org/10.1051/e3sconf/202561903001 | |
Published online | 12 March 2025 |
- Bi X, Yang KL. 2008. Real-time liquid crystal-based glutaraldehyde sensor. Sens Actuators B Chem 134(2): 432-437. https://doi.org/10.1016/j.snb.2008.05.030 [CrossRef] [Google Scholar]
- Lai SL, Yang KL. 2011. Detecting DNA targets through the formation of DNA/CTAB complex and its interactions with liquid crystals. Analyst 136(16): 3329-3334. https://doi.org/10.1039/C1AN15173H [CrossRef] [PubMed] [Google Scholar]
- Seo JM, Khan W, Park SY. 2012. Protein detection using aqueous/LC interfaces decorated with a novel polyacrylic acid block liquid crystalline polymer. Soft Matter 8: 198-203. https://doi.org/10.1039/C1SM06616A [CrossRef] [Google Scholar]
- Pirnstill CW, Cote GL. 2015. Malaria Diagnosis Using a Mobile Phone Polarized Microscope. Sci Rep 5: 13368. https://doi.org/10.1038/srep13368 [CrossRef] [PubMed] [Google Scholar]
- McUmber AC, Noonan PS, Schwartz DK. 2012. Surfactant–DNA interactions at the liquid crystal–aqueous interface. Soft Matter 8(16): 4335-4342. https://doi.org/10.1039/C2SM07483D [CrossRef] [Google Scholar]
- Shen J, He F, Chen L, Ding L, Liu H, Wang Y, Xiong X. 2017. Liquid crystal-based detection of DNA hybridization using surface immobilized single-stranded DNA. Microchim Acta 184(9): 3137-3144. https://doi.org/10.1007/s00604-017-2324-y [CrossRef] [Google Scholar]
- Xu Y, Rather AM, Song S, Fang JC, Dupont RL, Kara UI, Chang Y, Paulson JA, Qin R, Bao X, Wang X. 2020. Ultrasensitive and selective detection of SARS-CoV- 2 using thermotropic liquid crystals and image-based machine learning. Cell Rep Phys Sci 1(12): 100276. https://doi.org/10.1016/j.xcrp.2020.100276 [CrossRef] [PubMed] [Google Scholar]
- Iglesias W, Abbott NL, Mann EK, Jakli A. 2012. Improving liquid-crystal-based biosensing in aqueous phases. ACS Appl Mater Interfaces 4(12): 6884-6890. https://doi.org/10.1021/am301952f [CrossRef] [PubMed] [Google Scholar]
- Zhao D, Peng Y, Xu L, Zhou W, Wang Q, Guo L. 2015. Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin. ACS Appl Mater Interfaces 7(42): 23418-23422. https://doi.org/10.1021/acsami.5b08924 [CrossRef] [PubMed] [Google Scholar]
- Honaker LW, Chen C, Dautzenberg FMH, Brugman S, Deshpande S. 2022. Designing biological microsensors with chiral nematic liquid crystal droplets. ACS Appl Mater Interfaces 14(33): 37316-37329. https://doi.org/10.1021/acsami.2c06923 [CrossRef] [PubMed] [Google Scholar]
- Stohr J, Samant MG. 1999. Liquid crystal alignment by rubbed polymer surfaces: A microscopic bond orientation model. J Electron Spectrosc Relat Phenom 98-99: 189-207. https://doi.org/10.1016/S0368-2048(98)00286-2 [CrossRef] [Google Scholar]
- Choi SH, Kim JA, Lee SY, Hwang KJ, Park SY, Ji ES, Park HG. 2021. Effect of atmospheric plasma and rubbing coprocessing on liquid crystal alignment on a polyimide layer. Opt Mater 122, 111759. https://doi.org/10.1016/j.optmat.2021.111759 [CrossRef] [Google Scholar]
- Selvaraj P, Li PY, Antony M, Wang YW, Chou JP, Chen ZH, Hsu CJ, Huang CY. 2022. Rubbing-free liquid crystal electro-optic device based on organic single- crystal rubrene. Opt Express 30(6): 9521-9533. https://doi.org/10.1364/OE.454130 [CrossRef] [PubMed] [Google Scholar]
- Brake JM, Mezera AD, Abbott NL. 2003. Effect of surfactant structure on the orientation of liquid crystals at aqueous−liquid crystal interfaces. Langmuir 19(16): 6436-6442. https://doi.org/10.1021/la034132s [CrossRef] [Google Scholar]
- Humar M, Musevic I. 2011. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Opt Express 19(21): 19836-19844. https://doi.org/10.1364/OE.19.019836 [CrossRef] [PubMed] [Google Scholar]
- Nadasi H, Stannarius R, Eremin A, Ito A, Ishikawa K, Haba O, Yonetake K, Takezoe H, Araoka F. 2017. Photomanipulation of the anchoring strength using a spontaneously adsorbed layer of azo dendrimers. Phys Chem Chem Phys 19(11): 7597-7606. https://doi.org/10.1039/C6CP08461C [CrossRef] [PubMed] [Google Scholar]
- Eremin A, Nadasi H, Hirankittiwong P, Kiang-Ia J, Chattham N, Haba O, Yonetake K, Takezoe H. 2018. Azodendrimers as a photoactive interface for liquid crystals. Liq Cryst 45(13-15): 2121-2131. https://doi.org/10.1080/02678292.2018.1509388 [CrossRef] [Google Scholar]
- Zakhlevnykh AN, Shavkunov VS. 2018. Soft anchoring effect and magnetic field induced transitions in homeotropic cholesteric liquid crystal layer. J Mol Liq 267: 229-241. https://doi.org/10.1016/j.molliq.2018.01.045 [CrossRef] [Google Scholar]
- Yesil F, Suwa M, Tsukahara S. 2018. Anchoring energy measurements at the aqueous phase/liquid crystal interface with cationic surfactants using magnetic Fréedericksz transition. Langmuir 34(1): 81-87. https://doi.org/10.1021/acs.langmuir.7b03005 [CrossRef] [PubMed] [Google Scholar]
- Scarfone AM, Lelidis, I, Barbero G. 2011. Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model. Phys Rev E Stat Nonlin Soft Matter Phys 84(2): 021708. https://doi.org/10.1103/PhysRevE.84.021708 [CrossRef] [PubMed] [Google Scholar]
- Aya S, Le KV, Sasaki Y, Araoka F, Ishikawa K, Takezoe H. 2012. Critical behavior in an electric-field-induced anchoring transition in a liquid crystal. Phys Rev E 86(1): 010701. https://doi.org/10.1103/PhysRevE.86.010701 [CrossRef] [PubMed] [Google Scholar]
- Rudyak VY, Krakhalev MN, Sutormin VS, Prishchepa OO, Zyryanov VY, Liu JH, Emelyanenko AV, Khokhlov AR. 2017. Electrically induced structure transition in nematic liquid crystal droplets with conical boundary conditions. Phys Rev E 96(5): 052701. https://doi.org/10.1103/PhysRevE.96.052701 [CrossRef] [PubMed] [Google Scholar]
- Andrienko D, Dyadyusha A, Kurioz Y, Reshetnyak V, Reznikov Y. 1998. Light- induced anchoring transitions and bistable nematic alignment on polysiloxane- based aligning surface. Mol Cryst Liq Cryst Sci Technol. Sec A. Mol Cryst Liq Cryst 321(1): 299-307. https://doi.org/10.1080/10587259808025096 [CrossRef] [Google Scholar]
- Ikeda T, Aya S, Araoka F, Ishikawa K, Haba O, Yonetake K, Momoi Y, Takezoe H. 2013. Novel bistable device using anchoring transition and command surface. Appl Phys Express 6: 061701. http://dx.doi.org/10.7567/APEX.6.061701 [CrossRef] [Google Scholar]
- Hirankittiwong P, Chattham N, Limtrakul J, Haba O, Yonetake K, Eremin A, Stannarius R, Takezoe H. 2014. Optical manipulation of the nematic director field around microspheres covered with an azo-dendrimer monolayer. Opt Express 22(17): 20087-20093. https://doi.org/10.1364/OE.22.020087 [CrossRef] [PubMed] [Google Scholar]
- Durey G, Ishii Y, Lopez-Leon T. 2020. Temperature-driven anchoring transitions at liquid crystal/water interfaces. Langmuir 36(32): 9368-9376. https://doi.org/10.1021/acs.langmuir.0c00985 [CrossRef] [PubMed] [Google Scholar]
- Jagemalm P, Komitov L. 1997. Temperature induced anchoring transition in nematic liquid crystals with two-fold degenerate alignment. Liq Crystals 23(1): 1-8. https://doi.org/10.1080/026782997208604 [CrossRef] [Google Scholar]
- Wang Z, Xu T, Noel A, Chen Y-C, Liu T. 2021. Applications of liquid crystals in biosensing. Soft Matter 17(18): 4675-4702. https://doi.org/10.1039/D0SM02088E [CrossRef] [PubMed] [Google Scholar]
- Khan M, Khan AR, Shin JH, Park SY. 2016. A liquid-crystal-based DNA biosensor for pathogen detection. Sci Rep 6(1): 22676. https://doi.org/10.1038/srep22676 [CrossRef] [PubMed] [Google Scholar]
- Lai SL, Tan WL, Yang KL. 2011. Detection of DNA targets hybridized to solid surfaces using optical images of liquid crystals. ACS Appl Mater Interfaces 3(9): 3389-3395. https://doi.org/10.1021/am200571h [CrossRef] [PubMed] [Google Scholar]
- Yang X, Zhao X, Liu F, Li H, Zhang CX, Yang Z. 2021. Simple, rapid and sensitive detection of Parkinson’s disease related alpha-synuclein using a DNA aptamer assisted liquid crystal biosensor. Soft Matter 17(18): 4842-4847. https://doi.org/10.1039/D1SM00298H [CrossRef] [PubMed] [Google Scholar]
- Hu QZ, Jang CH. 2012. Using liquid crystals for the real-time detection of urease at aqueous/liquid crystal interfaces. J Mater Sci 47(2): 969-975. https://doi.org/10.1007/s10853-011-5876-y [CrossRef] [Google Scholar]
- Khan M, Kim Y, Lee JH, Kang IK, Park SY. 2014. Real-time liquid crystal-based biosensor for urea detection. Anal Methods 6(15): 5753-5759. https://doi.org/10.1039/C4AY00866A [CrossRef] [Google Scholar]
- Velasco AA, Herbert KM, Matavulj VM, White TJ, Schwartz DK, Kaar JL. 2021. Chemically triggered changes in mechanical properties of responsive liquid crystal polymer networks with immobilized urease. J Am Chem Soc 143(40): 16740-16749. https://doi.org/10.1021/jacs.1c08216 [CrossRef] [PubMed] [Google Scholar]
- Jannat M, Yang KL. 2018. Continuous protease assays using liquid crystal as a reporter. Sens Actuators B Chem 269: 8-14. https://doi.org/10.1016/j.snb.2018.04.125 [CrossRef] [Google Scholar]
- Chang CY, Chen CH. 2014. Oligopeptide-decorated liquid crystal droplets for detecting proteases. Chem Comm 50(81): 12162-12165. https://doi.org/10.1039/C4CC04651J [CrossRef] [PubMed] [Google Scholar]
- Chuang CH, Lin YC, Chen WL, Chen YH, Chen YX, Chen CM, Shiu HW, Chang LY, Chen CH, Chen CH. 2016. Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin. Biosens Bioelectron 78: 213-220. https://doi.org/10.1016/j.bios.2015.11.049 [CrossRef] [PubMed] [Google Scholar]
- Hu QZ, Jang CH. 2012. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer. ACS Appl Mater Interfaces 4(3): 1791-1795. https://doi. org/10.1021/am300043d [CrossRef] [PubMed] [Google Scholar]
- Zhang M, Jang CH. 2014. Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer. ChemPhysChem 15(12): 2569-2574. https://doi.org/ 10.1002/cphc.201402120 [CrossRef] [PubMed] [Google Scholar]
- Kim H, An Z, Jang CH. 2018. Label-free optical detection of thrombin using a liquid crystal-based aptasensor. Microchem J 141: 71-79. https://doi.org/ 10.1016/j.microc.2018.05.010 [CrossRef] [Google Scholar]
- Zhang M, Jang CH. 2014. Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer. Anal Biochem 455: 13-19. https://doi.org/10.1016/j.ab.2014.03.018 [CrossRef] [PubMed] [Google Scholar]
- Krishnamoorthy, Murugaperumal, Md Asif, Polamarasetty P. Kumar, Ramakrishna SS Nuvvula, Baseem Khan, and Ilhami Colak. “A design and development of the smart forest alert monitoring system using IoT.” Journal of sensors 2023, no. 1 (2023): 8063524. [Google Scholar]
- Wang H, Xu T, Fu Y, Wang Z, Leeson MS, Jiang J, Liu T. 2022. Liquid crystal biosensors: principles, structure and applications. Biosensors 12(8): 639. https://doi.org/10.3390/bios12080639 [CrossRef] [PubMed] [Google Scholar]
- Suh A, Yoon DK. 2018. Nanoscratching technique for highly oriented liquid crystal materials. Sci Rep 8: 9460. https://doi.org/10.1038/s41598-018-27887-z [CrossRef] [PubMed] [Google Scholar]
- Zheng WJ, Huang MH. 2012. Use of polydimethylsiloxane thin film as vertical liquid crystal alignment layer. Thin Solid Films 520(7): 2841-2845. https://doi.org/10.1016/j.tsf.2011.11.016 [CrossRef] [Google Scholar]
- Lane DJ. 1991. 16S/23S rRNA sequencing. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematic, John Wiley and Sons, New York, 115-175. [Google Scholar]
- Hyeon SG, Lee JH, Kim DH, Jeong HC, Oh BY, Han JM, Lee JW, Seo DS. 2017. Free residual DC voltage for nematic liquid crystals on solution-derived lanthanum tin oxide film. Liq Cryst 44(9): 1421-1428. https://doi.org/ 10.1080/02678292.2017.1281451 [CrossRef] [Google Scholar]
- Qu R, Li G. 2022. Overview of liquid crystal biosensors: From basic theory to advanced applications. Biosensors 12(4): 205. https://doi.org/10. 3390/bios12040205 [CrossRef] [PubMed] [Google Scholar]
- Nandi R, Pal SK. 2018. Liquid crystal based sensing device using a smartphone. Analyst 143(5): 1046-1052. https://doi.org/10.1039/C7AN01987D [CrossRef] [PubMed] [Google Scholar]
- Nehring J, Saupe A. 1972. Calculation of the elastic constants of nematic liquid crystals. J Chem Phys 56(11): 5527-5528. https://doi.org/10.1063/1.1677071 [CrossRef] [Google Scholar]
- Klus B, Laudyn UA, Karpierz MA, Sahraoui B. 2014. All-optical measurement of elastic constants in nematic liquid crystals. Opt Express 22(24): 30257-30266. https://doi.org/10.1364/OE.22.030257 [CrossRef] [PubMed] [Google Scholar]
- Priest RG. 1973. Theory of the frank elastic constants of nematic liquid crystals. Phys Rev A 7(2): 720-729. https://doi.org/10.1103/PhysRevA.7.720 [CrossRef] [Google Scholar]
- Wu Y, Lv W, Chen H, Ge Y, Liu C, Ding X, Zou X, Hu J, Li J, Wang J, Zhang Y, Zhou X. 2023. Complete genome sequence of Xanthomonas citri subsp. citri CQ13, an alternative model strain to study citrus bacterial canker in China. PhytoFront™ 3(2): 484-486. https://doi.org/10.1094/PHYTOFR-11-22-0124-A [CrossRef] [Google Scholar]
- Niemi O, Laine P, Koskinen P, Pasanen M, Pennanen V, Harjunpaa H, Nykyri J, Holm L, Paulin L, Auvinen P, Palva, ET, Pirhonen M. 2017. Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1. Stand Genom Sci 12: 87. https://doi.org/10.1186/s40793-017-0301-z [CrossRef] [Google Scholar]
- Chen D, Liu B, Zhu Y, Zhang H, Chen Z, Zheng X, Xiao R, Chen Y. 2017. Complete genome sequence of Ralstonia solanacearum FJAT-91, a high-virulence pathogen of tomato wilt. Genome Announc 5(37): e00900-17. https://doi.org/ 10.1128/genomea.00900-17 [PubMed] [Google Scholar]
- Magar HS, Hassan RYA, Mulchandani A. 2021. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 21(19): 6578. https://doi.org/10.3390/s21196578 [CrossRef] [Google Scholar]
- Leva BJ, Peyman S, Millner P. 2020. A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol 209: 343-362. https://doi.org/10.1007/s00430-020-00668-0 [CrossRef] [PubMed] [Google Scholar]
- Clarridge III JE. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17(4): 840-862. https://doi.org/10.1128/cmr.17.4.840-862.2004 [CrossRef] [PubMed] [Google Scholar]
- Kim M, Chun J. 2014. Chapter 4 - 16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server. In: M. Goodfellow, I. Sutcliffe, & J. Chun (Eds.), Methods in Microbiology. Vol. 41: 61-74. Academic Press, UK. ISBN: 978-0-12-800176-9; ISSN: 0580-9517 (Series). https://doi.org/10.1016/bs.mim.2014.08.001 [CrossRef] [Google Scholar]
- Daliri EB-M, Ofosu FK, Chelliah R, Lee BH, Oh DH. 2021. Challenges and perspective in integrated multi-omics in gut microbiota studies. Biomolecules 11(2): 300. https://doi.org/10.3390/biom11020300 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.