Open Access
Issue
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
Article Number 03014
Number of page(s) 16
Section Smart Electronics for Sustainable Solutions
DOI https://doi.org/10.1051/e3sconf/202561903014
Published online 12 March 2025
  1. Li Z, Hu R, Song J, Liu L, Qu J, Song W, et al. Gas–liquid–solid triphase interfacial chemical reactions associated with gas wettability. Advanced Materials Interfaces. 2021;8(6):2001636. [CrossRef] [Google Scholar]
  2. Kalam S, Abu-Khamsin SA, Kamal MS, Patil S. A review on surfactant retention on rocks: mechanisms, measurements, and influencing factors. Fuel. 2021;293:120459. [CrossRef] [Google Scholar]
  3. Paraszkiewicz K, Moryl M, Płaza G, Bhagat D. K. Satpute S, Bernat P. Surfactants of microbial origin as antibiofilm agents. International Journal of Environmental Health Research. 2021;31(4):401-20. [CrossRef] [PubMed] [Google Scholar]
  4. Dick A, Stolz HJ, Sonsmann FK. Mild but effective skin cleansing—Evaluation of laureth‑23 as a primary surfactant. International Journal of Cosmetic Science. 2024.. [Google Scholar]
  5. Benhur AM, Diaz J, Amin S. Impact of polyelectrolyte‑surfactant interactions on the rheology and wet lubrication performance of conditioning shampoo. International Journal of Cosmetic Science. 2021;43(2):246-53. [CrossRef] [PubMed] [Google Scholar]
  6. SMEDDS of clofazimine. Journal of Pharmaceutical Innovation. 2021;16:504-15. [CrossRef] [Google Scholar]
  7. Buckley T, Karanam K, Han H, Vo HNP, Shukla P, Firouzi M, et al. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation. Water Research. 2023;230:119532. [CrossRef] [Google Scholar]
  8. Bournival G, Du Z, Ata S, Jameson G. Foaming and gas dispersion properties of non- ionic surfactants in the presence of an inorganic electrolyte. Chemical Engineering Science. 2014;116:536-46. [CrossRef] [Google Scholar]
  9. Zhou M, Li Z, Zhou Z, Zhang T, Wu B, Yang L, et al. Antistatic modification of lead styphnate and lead azide for surfactant applications. Propellants, Explosives, Pyrotechnics. 2013;38(4):569-76. [CrossRef] [Google Scholar]
  10. Martini A, Ramasamy US, Len M. Review of viscosity modifier lubricant additives. Tribology Letters. 2018;66:1-14. [CrossRef] [Google Scholar]
  11. Strati F, Neubert RH, Opálka L, Kerth A, Brezesinski G. Non-ionic surfactants as innovative skin penetration enhancers: Insight in the mechanism of interaction with simple 2D stratum corneum model system. European Journal of Pharmaceutical Sciences. 2021;157:105620. [CrossRef] [Google Scholar]
  12. Miyamoto T, Yamazaki N, Tomotsuka A, Sasahara H, Watanabe S, Yamada S. Tribological Properties between Taut Hair Fibers in Wet Conditions: A New Shampoo Formulation for Eliminating Stick‑Slip Friction. Journal of Surfactants and Detergents. 2021;24(3):501-10. [CrossRef] [Google Scholar]
  13. Selva Filho AAP, Converti A, Soares da Silva RdCF, Sarubbo LA. Biosurfactants as multifunctional remediation agents of environmental pollutants generated by the petroleum industry. Energies. 2023;16(3):1209. [CrossRef] [Google Scholar]
  14. Nemček L, Hagarová I. The recent strategies employed in chemical analysis of contaminated waters, sediments and soils as a part of the remediation process: Extraction. Environmental Pollution and Remediation. 2021:131-73. [Google Scholar]
  15. Tekinalp Ö, Zimmermann P, Burheim OS, Deng L. Removing halide ions from sulfate solutions by anion exchange membranes in electrodialysis process: recent advances, challenges, and prospects. Separation and Purification Technology. 2024;332:125767. [CrossRef] [Google Scholar]
  16. Saravanan A, Thamarai P, Deivayanai V, Karishma S, Shaji A, Yaashikaa P. Current strategies on bioremediation of personal care products and detergents: Sustainability and life cycle assessment. Chemosphere. 2024;354:141698. [CrossRef] [Google Scholar]
  17. Yang L, Li X, Dong J. Renewable branched-chain sulfonate surfactants by addition of sodium hydrogensulfite to alkyl oleate. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;641:128513. [CrossRef] [Google Scholar]
  18. Scerbacova A, Kopanichuk I, Cheremisin A. Effect of temperature and salinity on interfacial behavior of alkyl ether carboxylate surfactants. Petroleum Science and Technology. 2023;41(6):1-20. [CrossRef] [Google Scholar]
  19. Wibel R, Knoll P, Le-Vinh B, Kali G, Bernkop-Schnürch A. Synthesis and evaluation of sulfosuccinate-based surfactants as counterions for hydrophobic ion pairing. Acta Biomaterialia. 2022;144:54-66. [Google Scholar]
  20. Sorhie V, Gogoi B, Walling B, Acharjee SA, Bharali P. Role of micellar nanoreactors in organic chemistry: Green and synthetic surfactant review. Sustainable Chemistry and Pharmacy. 2022;30:100875. [CrossRef] [Google Scholar]
  21. Lorenzetto T, Frigatti D, Fabris F, Scarso A. Nanoconfinement effects of micellar media in asymmetric catalysis. Advanced Synthesis & Catalysis. 2022;364(11):1776-97. [CrossRef] [Google Scholar]
  22. González‑Granda S, Escot L, Lavandera I, Gotor‑Fernández V. Chemoenzymatic cascades combining biocatalysis and transition metal catalysis for asymmetric synthesis. Angewandte Chemie. 2023;135(18):e202217713. [CrossRef] [Google Scholar]
  23. Quinson J, Kunz S, Arenz M. Beyond Active Site Design: A Surfactant‑Free Toolbox Approach for Optimized Supported Nanoparticle Catalysts. ChemCatChem. 2021;13(7):1692-705. [CrossRef] [Google Scholar]
  24. Thakore RR, Takale BS, Hu Y, Ramer S, Kostal J, Gallou F, et al. “TPG-lite”: A new, simplified “designer” surfactant for general use in synthesis under micellar catalysis conditions in recyclable water. Tetrahedron. 2021;87:132090. [CrossRef] [Google Scholar]
  25. Lou M, Meng L, Li J, Li F. Review of designing anti-surfactant wetting Janus membranes for membrane distillation: Mechanisms, methods and challenges. Desalination. 2024:118448. [Google Scholar]
  26. Parmentier M, Palamini P, Gosselin B, Jakobi M, Bordas V, Wu B, et al. One-pot synthesis of substituted amides from nitriles under mild reaction conditions in aqueous surfactant TPGS-750-M. Catalysis today. 2024:114915. [Google Scholar]
  27. Andersson MP. Entropy reduction from strong localization–an explanation for enhanced reaction rates of organic synthesis in aqueous micelles. Journal of Colloid and Interface Science. 2022;628:819-28. [CrossRef] [Google Scholar]
  28. Karnwal A, Shrivastava S, Al-Tawaha ARMS, Kumar G, Singh R, Kumar A, et al. Microbial biosurfactant as an alternate to chemical surfactants for application in cosmetics industries in personal and skin care products: a critical review. BioMed Research International. 2023;2023(1):2375223. [CrossRef] [PubMed] [Google Scholar]
  29. Zahed MA, Matinvafa MA, Azari A, Mohajeri L. Biosurfactant, a green and effective solution for bioremediation of petroleum hydrocarbons in the aquatic environment. Discover Water. 2022;2(1):5. [CrossRef] [Google Scholar]
  30. Marchut-Mikołajczyk O, Drożdżyński P, Polewczyk A, Smułek W, Antczak T. Biosurfactant from endophytic Bacillus pumilus 2A: physicochemical characterization, production and optimization and potential for plant growth promotion. Microbial Cell Factories. 2021;20:1-11. [CrossRef] [Google Scholar]
  31. Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Advances in Colloid and Interface Science. 2023;313:102856. [CrossRef] [Google Scholar]
  32. Sehrawat N, Sangwan S, Sharma P, Singh S, Lamba R, Singh V. Sophorolipid SurfactantMediated Green Synthesis and Characterization of Zinc Oxide Nanoparticles for Abrogating Zinc Deficiency in Wheat (Triticum aestivum L.) Crop. BioNanoScience. 2025;15(1):1-19. [CrossRef] [Google Scholar]
  33. Kanlayavattanakul M, Lourith N. Lipopeptides in cosmetics. International journal of cosmetic science. 2010;32(1):1-8. [CrossRef] [PubMed] [Google Scholar]
  34. Lopes C, Teixeira D, Braz B, Santelli R, de Castilho L, Gomez J, et al. Application of rhamnolipid surfactant for remediation of toxic metals of long-and short-term contamination sites. International Journal of Environmental Science and Technology. 2021;18:575-88. [CrossRef] [Google Scholar]
  35. Barik, Rabindra K., K. Muruga Perumal, P. Ajay-D-Vimal Raj, and S. Rajasekar. “Development and Implementation of Renewable Energy Potential Geospatial Database Mapping in India for Cloud SDI Using Open Source GIS.” In Advances in Smart Grid and Renewable Energy: Proceedings of ETAEERE-2016, pp. 419-428. Singapore: Springer Singapore, 2017. [Google Scholar]
  36. Dhaval M, Vaghela P, Patel K, Sojitra K, Patel M, Patel S, et al. Lipid-based emulsion drug delivery systems—A comprehensive review. Drug delivery and translational research. 2022:1-24. [Google Scholar]
  37. Bascou R, Flick A, Guénin E, Nesterenko A. Development of lipopeptide surfactants from silk sericin and evaluation of their surface active properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023;678:132460. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.