Open Access
Issue
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
Article Number 03017
Number of page(s) 9
Section Smart Electronics for Sustainable Solutions
DOI https://doi.org/10.1051/e3sconf/202561903017
Published online 12 March 2025
  1. Zhou, S. Wen, D. Wang, J. Meng, J. Mu, and R. Irampaye, “Mobile YOLO: Real-time object detection algorithm in autonomous driving scenarios,” Sensors, vol. 22, no. 9, p. 3349, Apr. 2022. [CrossRef] [Google Scholar]
  2. D. Feng et al., “Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges,” in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1341-1360, March 2021, doi: 10.1109/TITS.2020.2972974. [CrossRef] [Google Scholar]
  3. A. Gupta, K. Illanko and X. Fernando, “Object Detection for Connected and Autonomous Vehicles using CNN with Attention Mechanism,” 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 2022, pp. 1-6, doi: 10.1109/VTC2022-Spring54318.2022.9860676. [Google Scholar]
  4. Z. Lv, R. Wang, Y. Wang, F. Zhou and N. Guo, “Road Scene Multi-Object Detection Algorithm Based on CMS,” in IEEE Access, vol. 11, pp. 121190-121201, 2023, doi: 10.1109/ACCESS.2023.3327735. [CrossRef] [Google Scholar]
  5. Li Y, Wang J, Huang J, Li Y. Research on Deep Learning Automatic Vehicle Recognition Algorithm Based on RES-YOLO Model. Sensors (Basel). 2022 May 16;22(10):3783. doi: 10.3390/s22103783. PMID: 35632188; PMCID: PMC9143950. [CrossRef] [PubMed] [Google Scholar]
  6. D. Tian et al., “SA-YOLOv3: An Efficient and Accurate Object Detector Using Self- Attention Mechanism for Autonomous Driving,” in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 5, pp. 4099-4110, May 2022, doi: 10.1109/TITS.2020.3041278. [CrossRef] [Google Scholar]
  7. S. Li, Y. Li, Y. Li, M. Li and X. Xu, “YOLO-FIRI: Improved YOLOv5 for Infrared Image Object Detection,” in IEEE Access, vol. 9, pp. 141861-141875, 2021, doi: 10.1109/ACCESS.2021.3120870. [CrossRef] [Google Scholar]
  8. Zhou, Y.; Wen, S.; Wang, D.; Mu, J.; Richard, I. Object Detection in Autonomous Driving Scenarios Based on an Improved Faster-RCNN. Appl. Sci. 2021, 11, 11630. [CrossRef] [Google Scholar]
  9. N. Zarei, P. Moallem and M. Shams, “Fast-Yolo-Rec: Incorporating YoloBase Detection and Recurrent-Base Prediction Networks for Fast Vehicle Detection in Consecutive Images,” in IEEE Access, vol. 10, pp.120592-120605, 2022, doi:010.1109/ACCESS.2022.3221942. [CrossRef] [Google Scholar]
  10. Haleema, K., Sruthi Kumari Juluri, S. Pooja Sree, Praneeth Karnekota, and K. Murugaperumal. “Sustainable Designing of Hybrid Renewable Electrification System for Urban Residential Community Load.” In 2023 4th International Conference for Emerging Technology (INCET), pp. 1-7. IEEE, 2023. [Google Scholar]
  11. S. Liang et al., “Edge YOLO: Real-Time Intelligent Object Detec- tion System Based on Edge-Cloud Cooperation in Autonomous Vehicles,” in IEEE Transactions on Intelligent Transportation Systems, vol. 23,no.12,pp. 25345-25360, Dec. 2022, doi: 10.1109/TITS.2022.3158253. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.