Open Access
Issue
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
Article Number 04010
Number of page(s) 10
Section Materials for a Sustainable Future
DOI https://doi.org/10.1051/e3sconf/202561904010
Published online 12 March 2025
  1. C. Shuai, S. Li, S. Peng, P. Feng, Y. Lai, and C. Gao, “Biodegradable metallic bone implants,” Mater. Chem. Front., 3, 544-562 (2019). [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Tan, X. Yu, P. Wan, and K. Yang, “Biodegradable Materials for Bone Repairs: A Review,” J. Mater. Sci. Technol., 29, 503-513(2013). [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Y. Gutmanas, I. Gotman, A. Sharipova, S. G. Psakhie, S. K. Swain, and R. Unger, “Drug loaded biodegradable load-bearing nanocomposites for damaged bone repair,” in AIP Conference Proceedings, September 28 (2017). [Google Scholar]
  4. M. Montani, A. G. Demir, E. Mostaed, M. Vedani, and B. Previtali, “Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing,” Rapid Prototyp. J., 23, 514-523 (2017). [CrossRef] [Google Scholar]
  5. S. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends in Biotechnology. 30,546-554(2012). [CrossRef] [PubMed] [Google Scholar]
  6. A. Erryani, F. P. Lestari, D. Annur, and I. Kartika, “Preparation and characterization of coating sodium trisilicate (Na2O.nSiO2) at calcium carbonate (CaCO3) for blowing agent in Mg alloy foam,” in AIP Conference Proceedings, May 15 (2018). [Google Scholar]
  7. J. Cheng and Y. F. Zheng, “In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering,” J. Biomed. Mater. Res. - Part B Appl. Biomater., 101, 485-497 (2013). [CrossRef] [Google Scholar]
  8. B. Liu and Y. F. Zheng, “Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron,” Acta Biomater., 7, 1407-1420(2011). [CrossRef] [Google Scholar]
  9. K. Yang et al., “Bio-functional design, application and trends in metallic biomaterials,” International Journal of Molecular Sciences. 19, 24 (2017). [CrossRef] [PubMed] [Google Scholar]
  10. Y. Liu et al., “Understanding and suppressing side reactions in Li-air batteries,” Materials Chemistry Frontiers. 1,2495-2510 (2017). [Google Scholar]
  11. U. Riaz, I. Shabib, and W. Haider, “The current trends of Mg alloys in biomedical applications—A review,” J. Biomed. Mater. Res. - Part B Appl. Biomater., 107, 1970–1996(2019). [CrossRef] [PubMed] [Google Scholar]
  12. U. Riaz, L. Rakesh, I. Shabib, and W. Haider, “Effect of dissolution of magnesium alloy AZ31 on the rheological properties of Phosphate Buffer Saline,” J. Mech. Behav. Biomed. Mater., 85, 201-208(2018). [CrossRef] [Google Scholar]
  13. N. E. L. Saris, E. Mervaala, H. Karppanen, J. A. Khawaja, and A. Lewenstam, “Magnesium: An update on physiological, clinical and analytical aspects,” Clinica Chimica Acta. 294,1-26(2000). [Google Scholar]
  14. C. K. Seal, K. Vince, and M. A. Hodgson, “Biodegradable surgical implants based on magnesium alloys - A review of current research,” in IOP Conference Series: Materials Science and Engineering, 4, 012011(2009). [CrossRef] [Google Scholar]
  15. G. Song, “Control of biodegradation of biocompatable magnesium alloys,” Corrosion Science. 49, 1696-1701 (2007). [CrossRef] [Google Scholar]
  16. Y. K. Kim, K. B. Lee, S. Y. Kim, Y. S. Jang, J. H. Kim, and M. H. Lee, “Improvement of osteogenesis by a uniform PCL coating on a magnesium screw for biodegradable applications,” Sci. Rep., 8, 1–11(2018). [Google Scholar]
  17. A. C. Bîrcă et al., “Mg–Zn alloys, most suitable for biomedical applications,” Romanian Journal of Morphology and Embryology. 59, 49-54(2018). [Google Scholar]
  18. S. Shadanbaz and G. J. Dias, “Calcium phosphate coatings on magnesium alloys for biomedical applications: A review,” Acta Biomaterialia,8,20-30(2012). [CrossRef] [PubMed] [Google Scholar]
  19. Y. Sun, B. Zhang, Y. Wang, L. Geng, and X. Jiao, “Preparation and characterization of a new biomedical Mg-Zn-Ca alloy,” Mater. Des., 34 ,58-64(2012). [Google Scholar]
  20. V. Roche et al., “Degradation of biodegradable implants: The influence of microstructure and composition of Mg-Zn-Ca alloys,” J. Alloys Compd., 774, 168–181, (2019). [CrossRef] [Google Scholar]
  21. S. Cai, T. Lei, N. Li, and F. Feng, “Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys,” Mater. Sci. Eng. C, 32, 2570-2577(2012). [CrossRef] [Google Scholar]
  22. K. Gusieva, C. H. J. Davies, J. R. Scully, and N. Birbilis, “Corrosion of magnesium alloys: the role of alloying,” Int. Mater. Rev., 60, 169–194(2015). [CrossRef] [Google Scholar]
  23. R. Radha and D. Sreekanth, “Insight of magnesium alloys and composites for orthopedic implant applications – a review,” J. Magnes. Alloy., 5, 286–312(2017). [CrossRef] [Google Scholar]
  24. M. Shahin, K. Munir, C. Wen, and Y. Li, “Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives,” Acta Biomater., 96, 1–19(2019). [CrossRef] [Google Scholar]
  25. Y. Ding, C. Wen, P. Hodgson, and Y. Li, “Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review,” J. Mater. Chem. B, 2, 1912-1933(2014). [CrossRef] [PubMed] [Google Scholar]
  26. M. Sankar, J. Vishnu, M. Gupta, and G. Manivasagam, Magnesium-based alloys and nanocomposites for biomedical application. Elsevier Inc., 83-109(2019). [Google Scholar]
  27. K. S. Munir, C. Wen, and Y. Li, “Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: a Review,” Adv. Biosyst., 3, 1–24(2019). [CrossRef] [Google Scholar]
  28. Q. B. Nguyen and M. Gupta, “Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates,” Composites Science and Technology. 68, 2185-2192 (2008). [CrossRef] [Google Scholar]
  29. G. Garcés, M. Rodríguez, P. Pérez, and P. Adeva, “Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg-Y2O3 composites,” Mater. Sci. Eng. A, A 419, 357-364 (2006). [CrossRef] [Google Scholar]
  30. L. Tsetseris and S. T. Pantelides, “Graphene: An impermeable or selectively permeable membrane for atomic species?,” Carbon N. Y., 67, 58–63, (2014). [CrossRef] [Google Scholar]
  31. P. Fratzl, H. S. Gupta, E. P. Paschalis, and P. Roschger, “Structure and mechanical quality of the collagen-mineral nano-composite in bone,” Journal of Materials Chemistry. 14, 2115-2123 (2004). [CrossRef] [Google Scholar]
  32. N. Saito et al., “Safe clinical use of carbon nanotubes as innovative biomaterials,” Chemical Reviews. 11, 6040-6079 (2014). [CrossRef] [PubMed] [Google Scholar]
  33. M. Rashad, F. Pan, M. Asif, and X. Chen, “Corrosion behavior of magnesium- graphene composites in sodium chloride solutions,” J. Magnes. Alloy., 5, 271-276(2017). [CrossRef] [Google Scholar]
  34. B. D. Holt, Z. M. Wright, A. M. Arnold, and S. A. Sydlik, “Graphene oxide as a scaffold for bone regeneration,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 9,1437(2017) [Google Scholar]
  35. O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials,” Small. 2010. [Google Scholar]
  36. F. Witte et al., “Biodegradable magnesium-hydroxyapatite metal matrix composites,” Biomaterials,. 28,2163-2174(2007). [CrossRef] [PubMed] [Google Scholar]
  37. M. H. Fathi, M. Meratian, and M. Razavi, “Novel magnesium-nanofluorapatite metal matrix nanocomposite with improved biodegradation behavior,” J. Biomed. Nanotechnol., 7, 441-445 (2011). [CrossRef] [Google Scholar]
  38. J. Venugopal, M. P. Prabhakaran, Y. Zhang, S. Low, A. T. Choon, and S. Ramakrishna, “Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2010. Philos Trans A Math Phys Eng Sci, 368,2065-2081 (2010). [CrossRef] [PubMed] [Google Scholar]
  39. G. Parande et al., “Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites,” J. Mech. Behav. Biomed. Mater., 103, 103584 (2020) [CrossRef] [Google Scholar]
  40. X. Gu, W. Zhou, Y. Zheng, L. Dong, Y. Xi, and D. Chai, “Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites,” Mater. Sci. Eng. C, 30, 827–832 (2010). [CrossRef] [Google Scholar]
  41. C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, “Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review,” Scanning. 2018,15(2018). [Google Scholar]
  42. M. Razavi, M. H. Fathi, and M. Meratian, “Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications,” Mater. Sci. Eng. A, 527, 6938–6944, (2010). [CrossRef] [Google Scholar]
  43. M. Razavi, M. H. Fathi, and M. Meratian, “Fabrication and characterization of magnesium-fluorapatite nanocomposite for biomedical applications,” Mater. Charact.,61, 1363-1370 ( 2010). [CrossRef] [Google Scholar]
  44. W. Zhou, T. Shen, and N. N. Aung, “Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid,” Corros. Sci., 52, 1035–1041 (2010). [CrossRef] [Google Scholar]
  45. Krishnamoorthy, Murugaperumal, Karuppiah Natarajan, Praveen Kumar Balachandran, and Suresh Srinivasan. “Design and simulation of a renewable-based sustainable electrification system for a water purification plant.” In Green Energy Systems, pp. 25-36. Academic Press, 2023. [Google Scholar]
  46. X. Bin Liu, D. Y. Shan, Y. W. Song, and E. H. Han, “Effects of heat treatment on corrosion behaviors of Mg-3Zn magnesium alloy,” Trans. Nonferrous Met. Soc. China (English Ed., 110,462-487(2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.