Open Access
Issue
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
Article Number 04012
Number of page(s) 12
Section Materials for a Sustainable Future
DOI https://doi.org/10.1051/e3sconf/202561904012
Published online 12 March 2025
  1. V. Ermolov, M. Heino, A. Karkkainen, R. Lehtiniemi, N. Nefedov, P. Pasanen, Z. Radivojevic, M. Rouvala, (2007) Significance of nanotechnology for future wireless devices and communications, IEEE 18th Int Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece. [Google Scholar]
  2. R. Kannaparthy, A. Kanaparthy, The changing face of dentistry: nanotechnology, International Journal of Nanomedicine, 6 (2011) 2799-804. [CrossRef] [Google Scholar]
  3. M.A.R. Iadiz, M. Bamedi, S.R. Fakour, Periodontal Diseases and Recently Applied Nano Technology, A Review Article, Health, 9 (2017) 345-51. [Google Scholar]
  4. P. Rodgers (2006) Nanoelecronics: Single File, Nature Nanotechnology. [Google Scholar]
  5. H. Komatsu, A. Ogasawara Applying Nanotechnology to Electronics, 16 (2005) 36-45. [Google Scholar]
  6. Chaudhari, M. Ibrahim (2011) Electron Beam and X-Ray Lithography, https://ece.umd.edu/courses/enee416/GroupActivities/Ebeam.pdf [Google Scholar]
  7. S.E. Thompson, S. Parthasarathy, Moore’s law: the future of Si microelectronics, Materials Today, 9 (2006) 20-25. [CrossRef] [Google Scholar]
  8. R.W. Keyes, Fundamental limits of silicon technology, Proceedings of the IEEE, 89 (2001) 227-239. [CrossRef] [Google Scholar]
  9. Kanagarathinam, K., Manikandan, R., & S, R. (2023). Impact of Stator Slot Shape on Cogging Torque of BLDC Motor. International Journal of Electrical and Electronics Research, 11(1), 54–60. https://doi.org/10.37391/ijeer.110108 [CrossRef] [Google Scholar]
  10. V. Balzani, Nanoscience and nanotechnology: The bottom-up construction of molecular devices and machines, Pure and Applied Chemistry, 80 (2008) 1631-50. [CrossRef] [Google Scholar]
  11. N.C. DURHAM, (2017) Samsung will participate in multiple SRC research programs for the advancement of semiconductor technologies, Semiconductor Research Corporation, North Carolina, and USA. [Google Scholar]
  12. Jan-Michael Rost (2010) Nanoscience and nanotechnology in physics and chemistry, Research Perspectives of the Max Planck Society. [Google Scholar]
  13. C. Sumereder, M. Muhr, The prospects of nanotechnology in electrical power engineering, 19 th International Conference on Electricity Distribution, 1(2007) 1-4. [Google Scholar]
  14. J.E. Contreras, E.A. Rodriguez, J. Taha-Tijerina, Nanotechnology applications for electrical transformers-a review, Electric Power Systems Research, 143 (2017) 573-584. [CrossRef] [Google Scholar]
  15. W. Luther, (2008) Application of nanotechnologies in the energy sector, VDI Technologiezentrum GmbH. [Google Scholar]
  16. W. Lu, C.M. Lieber, Topical Review: Semiconductor nanowires, Journal of Physics D: Applied Physics, 39 (2006) 387-406. [Google Scholar]
  17. Karthick, K., Ravivarman, S., Samikannu, R., Vinoth, K., & Sasikumar, B. (2021). Analysis of the Impact of Magnetic Materials on Cogging Torque in Brushless DC Motor. Advances in Materials Science and Engineering, 2021, 1–10. https://doi.org/10.1155/2021/5954967 [CrossRef] [Google Scholar]
  18. E. C. Nsofor, Recent patents on Nano fluids (nanoparticles in liquids) heat transfer, Journal of Recent Patents on Mechanical Engineering, 1 (2008) 190-197. [CrossRef] [Google Scholar]
  19. L. E. Lundgaard, W. Hansen, D. Linhjell, T. Painter, Ageing of mineral oil impregnated cellulose by acid catalysis, IEEE Transactions on Dielectrics and Electrical Insulation, 15 (2008) 540-546. [CrossRef] [Google Scholar]
  20. Y.-X. Zhou, Y.-S. Wang, J.-H. Tian et al., Breakdown characteristics in transformer oil modified by nanoparticles, GaodianyaJishu/High Voltage Engineering, 36 (2010)1155-1159. [Google Scholar]
  21. E. C. Nsofor, Recent patents on Nano fluids (nanoparticles in liquids) heat transfer, Journal of Recent Patents on Mechanical Engineering, 1 (2008)1190-197. [Google Scholar]
  22. L. E. Lundgaard, W. Hansen, D. Linhjell, T. Painter, Ageing of mineral oil impregnated cellulose by acid catalysis, IEEE Transactions on Dielectrics and Electrical Insulation, 15 (2008) 540–546. [CrossRef] [Google Scholar]
  23. V. Segal, A. Hjortsberg, A. Rabinovich, D. Nattrass, and K. Raj, AC (60 Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles, In Proceedings of the Conference Record of the IEEE International Symposium in Electrical Insulation, 2 (1998) 619-622. [Google Scholar]
  24. J. G. Hwang, M. Zahn, F. M. O’Sullivan, L. A. A. Pettersson, O. Hjortstam, R. S. Liu, Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids, Journal of Applied Physics, 107 (2010). Vol. 2 Iss. 2 Year 2019 Salman Zeb et al/2019 Nanosclae Reports, 32-38 | 37 [CrossRef] [Google Scholar]
  25. T. Takada, Y. Hayase, Y. Tanaka, and T. Okamoto, Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgOnanocomposite, IEEE Transactions on Dielectrics and Electrical Insulation, 15 (2008)152-160. [CrossRef] [Google Scholar]
  26. L. Lundgaard, W. Hansen, D. Linhjell, T.J. Painter, Aging of oil-impregnated paper in power transformers, IEEE Transactions on Power Delivery, 19 (2004) 230-239. [CrossRef] [Google Scholar]
  27. J.H. Harlow, (2004) Electric Power Transformer Engineering, CRC Press. [Google Scholar]
  28. M. Eklund, P. Jarman, G. Newesely, (2004) Transformer Oil Handbook, Nynas, Sweden. [Google Scholar]
  29. Q. Wang, M. Rafiq, Y. Lv, C. Li, K. Yi, Preparation of three types of transformer oil- based nanofluids and comparative study on the effect of nanoparticle concentrations on insulating property of transformer oil, Journal of Nanotechnology, (2016) 1-7. [Google Scholar]
  30. Q. Wang, M. Rafiq, Y. Lv, C. Li, K. Yi, Preparation of three types of transformer oil- based Nano fluids and comparative study on the effect of nanoparticle concentrations on insulating property of transformer oil, Journal of Nanotechnology, (2016) 1-7. [Google Scholar]
  31. Y. Iqbal, On the glassy phase in tri-axial porcelain bodies, Journal of Pakistan Material Society, 2 (2008) 62-71. [Google Scholar]
  32. W. Carty, U. Senapati, Porcelain-raw materials, processing, phase evolution, and mechanical behavior, Journal of the American Ceramic Society, 81 (1998) 3-20. [CrossRef] [Google Scholar]
  33. K. Dana, S. Das, K.S. Das, Effect of substitution of fly ash for quartz in triaxial Kaolin–Quartz–Feldspar system, Journal of the European Ceramic Society, 24 (2004) 3169-3175. [CrossRef] [Google Scholar]
  34. K.H. Schüller, Porcelain. Ceramics Monographs - A Handbook of Ceramics, Verlag Schmidt GmbH Freiburg i. Brg, 1979. [Google Scholar]
  35. L. Khoroshavin, V. Perepelitsyn, On the nanotechnology of refractories, Refractories and Industrial Ceramics, 40 (1999) 553-557. [CrossRef] [Google Scholar]
  36. P. Manivasakan, V. Rajendran, P.R. Rauta, B.B. Sahu, P. Sahu, B.K. Panda, S. Valiyaveettill, S. Jegadesan, Effect of TiO2 nanoparticles on properties of silica refractory, Journal of the American Ceramic Society, 93 (2010) 2236–2243. [CrossRef] [Google Scholar]
  37. J. Zhuang, P. Liu, W. Dai, X. Fu, H. Lin, W. Zeng, F. Liao, A Novel Application of Nano Anticontamination Technology for Outdoor High‐Voltage Ceramic Insulators. International journal of applied ceramic technology, 7 (2010) 46-53. [CrossRef] [Google Scholar]
  38. J. Pyrhönen, J. Montonen, P. Lindh, J.J. Vauterin, M. Otto, Replacing copperwith new carbon nanomaterials in electrical machine windings, International Review of Electrical Engineering-IREE, 10 (2015). [Google Scholar]
  39. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, High-performance carbon nanotube fiber, Science, 318 (2007) 1892-1895. [CrossRef] [PubMed] [Google Scholar]
  40. M.-F. Yu, B.S. Siles, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of singlewall carbon nanotubes and their mechanical properties, Physical Review Letters, 84 (2000) 5552-5555. [CrossRef] [PubMed] [Google Scholar]
  41. C.T. White, T.N. Todorov, Carbon nanotubes as long ballistic conductors, Nature 393 (2007) 240-242. [Google Scholar]
  42. P. Poncharal, C. Berger, Y. Yi, Z.L. Wang, W.A. de Heer, Room temperature ballistic conduction in carbon nanotubes, The Journal of Physical Chemistry B, 106 (2002)12104-12118. [CrossRef] [Google Scholar]
  43. L. Kurzepa, A. Lekawa-Raus, J. Patmore, K. Koziol, Replacing copper wires with carbon nanotube wires in electrical transformers, Advanced Functional Materials, 24(2014) 619-624. [CrossRef] [Google Scholar]
  44. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, K. Koziol, Electrical properties of carbon nanotube based fibers and their future use in electrical wiring, Advanced Functional Materials, 24 (2014) 3661-3682. [CrossRef] [Google Scholar]
  45. Kumar, K. Dileep, N. Mukesh Reddy, J. Sai Priyanka, and K. Murugaperumal. “Design and Analyzing of DC Transformer Efficiency Enhancement for Microgrid Applications.” In 2023 4th International Conference for Emerging Technology (INCET), pp. 1-8. IEEE, 2023. [Google Scholar]
  46. Gunther Hans-Peter, (2005) Use and application of high-performance steels for steel structures, Labse-Aipc-Ivbh. [Google Scholar]
  47. R.H. Fernando, L.-P. Sung, Nanotechnology applications in coatings, American Chemical Society, 1008 (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.