Open Access
Issue |
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 17 | |
Section | Nanotechnology Innovations in Energy, Environment, and Healthcare | |
DOI | https://doi.org/10.1051/e3sconf/202561905001 | |
Published online | 12 March 2025 |
- M. Luan M, Jing G, Piao Y, Liu D, Jin L. 2017. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arabian J Chem 10: S769–S776. https://doi.org/10.1016/j.arabjc.2012.12.003 [CrossRef] [Google Scholar]
- Hanafi MF, Sapawe N. 2019. Electrosynthesis of ZrO2 nanoparticles with enhanced removal of phenolic compound. Mater Today: Proc 19: 1529–1532. https://doi.org/10.1016/j.matpr.2019.11.178 [CrossRef] [Google Scholar]
- Jilani A, Ansari MO, Rehman G, Shakoor MB, Hussain SZ, Othman MHD, Ahmad SR, Dustgeer MR, Alshahrie A. 2022. Phenol removal and hydrogen production from water: Silver nanoparticles decorated on polyaniline wrapped zinc oxide nanorods. J Ind Eng Chem 109: 347–358. https://doi.org/10.1016/j.jiec.2022.02.021 [CrossRef] [Google Scholar]
- Valero-Luna C, Palomares-Sanchez SA, Ruiz F. 2016. Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue. Catal Today 266: 110–119. https://doi.org/10.1016/j.cattod.2015.08.049 [CrossRef] [Google Scholar]
- Padhi DK, Panigrahi TK, Parida K, Singh SK, Mishra PM. 2017. Green synthesis of Fe3O4/RGO nanocomposite with enhanced photocatalytic performance for Cr(VI) reduction, phenol degradation, and antibacterial activity. ACS Sustain Chem Eng 5: 10551–10562. https://doi.org/10.1021/acssuschemeng.7b02548 [CrossRef] [Google Scholar]
- Lee H, Kannan P, Al Shoaibi A, Srinivasakannan C. 2019. Phenol degradation catalyzed by metal oxide supported porous carbon matrix under UV irradiation. J Water Process Eng 31: 100869. https://doi.org/10.1016/j.jwpe.2019.100869 [CrossRef] [Google Scholar]
- Othman I, Zain JH, Haija MA, Banat F. 2020. Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway. Appl Catal B: Environ 266: 118601. https://doi.org/10.1016/j.apcatb.2020.118601 [CrossRef] [Google Scholar]
- Fan YN, Ma WJ, He JL, Du YC. 2017. CoMoO4 as a novel heterogeneous catalyst of peroxymonosulfate activation for the degradation of organic dyes. RSC Adv 7: 36193–36200. https://doi.org/10.1039/C7RA04761D [CrossRef] [Google Scholar]
- Wang YX, Zhou L, Duan XG, Sun HQ, Tin EL, Jin WQ, Wang SB. 2015. Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals. Catal Today 258: 576–584. https://doi.org/10.1016/j.cattod.2014.12.020 [CrossRef] [Google Scholar]
- Othman I, Haija MA, Ismail I, Zain JH, Banat F. 2019. Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation. Mater Chem Phys 238: 121931. https://doi.org/10.1016/j.matchemphys.2019.121931 [CrossRef] [Google Scholar]
- Adersh A, Kulkarni AR, Ghosh S, More P, Chopade BA, Gandhi MN. 2015. Surface defect rich ZnO quantum dots as antioxidant inhibiting α-amylase and α-glucosidase: A potential anti-diabetic nanomedicine. J Mater Chem B 3: 4597-4606. https://doi.org/10.1039/C5TB00407A [CrossRef] [PubMed] [Google Scholar]
- Karmakar S, Ghosh S, Kumbhakar P. 2020. Enhanced sunlight driven photocatalytic and antibacterial activity of flower-like ZnO@MoS2 nanocomposite. J Nanopart Res 22: 11. https://doi.org/10.1007/s11051-019-4710-3 [CrossRef] [Google Scholar]
- Desai HB, Ghosh S, Pandit R, Tanna AR. 2022. Synergistic bacteriostatic effect of streptomycin-coated nanomagnetic functional oxides. Bio Nano Sci 12: 62-73. https://doi.org/10.1007/s12668-021-00923-5 [Google Scholar]
- Sapawe N, Jalil AA, Triwahyono S, Adam SH, Jaafar NF, Satar MAH. 2012. Isomorphous substitution of Zr in the framework of aluminosilicate HY by an electrochemical method: Evaluation by methylene blue decolorization. Appl Catal B: Environ 125: 311-323. https://doi.org/10.1016/j.apcatb.2012.05.042 [CrossRef] [Google Scholar]
- Sapawe N, Jalil AA, Triwahyono S, Sah RNRA, Jusoh NWC, Hairom NHH. 2013. Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of Si-O-Zn bonds. Appl Catal A: Gen 456: 144-158. https://doi.org/10.1016/j.apcata.2013.02.025 [CrossRef] [Google Scholar]
- Zamri MSFA, Sapawe N. 2018. Performance studies of electrobiosynthesis of titanium dioxide nanoparticles (TiO2) for phenol degradation. Mater Today: Proc 5: 21797-21801. https://doi.org/10.1016/j.matpr.2018.07.034 [CrossRef] [Google Scholar]
- Kitture R, Chordiya K, Gaware S, Ghosh S, More PA, Kulkarni P, Chopade BA, Kale SN. 2015. ZnO nanoparticles-red sandalwood conjugate: A promising anti-diabetic agent. J Nanosci Nanotechnol 15: 4046-4051. https://doi.org/10.1166/jnn.2015.10323 [CrossRef] [PubMed] [Google Scholar]
- Robkhob P, Ghosh S, Bellare J, Jamdade D, Tang IM, Thongmee S. 2020a. Effect of silver doping on antidiabetic and antioxidant potential of ZnO nanorods. J Trace Elem Med Biol 58: 126448. https://doi.org/10.1016/j.jtemb.2019.126448 [CrossRef] [PubMed] [Google Scholar]
- Jaafar NF, Najman AMM, Marfur A, Jusoh NWC. 2020. Strategies for the formation of oxygen vacancies in zinc oxide nanoparticles used for photocatalytic degradation of phenol under visible light irradiation. J Photochem Photobiol A: Chem 388: 112202. https://doi.org/10.1016/j.jphotochem.2019.112202 [CrossRef] [Google Scholar]
- Pardeshi SK, Patil AB. 2008. A simple route for photocatalytic degradation of phenol inaqueous zinc oxide suspension using solar energy. Sol Energy 82: 700–705. https://doi.org/10.1016/j.solener.2008.02.007 [CrossRef] [Google Scholar]
- Wang R, Xin JH, Yang Y, Liu H, Xu L, Hu J. 2014. The characteristics and photocatalytic activities of silver-doped ZnO nanocrystallites. Appl. Surf. Sci. 227: 312–317. https://doi.org.10.1016/j.apsusc.2003.12.012 [Google Scholar]
- Patterson AL 1939. The Scherrer formula for X-ray particle size determination. Phys Rev 56: 978–982. https://doi.org/10.1103/PhysRev.56.978 [CrossRef] [Google Scholar]
- Noukelag SK, Mohamed HEA, Moussa B, Razanamahandry LC, Ntwampe SKO, Arendse CJ, Maaza M. 2020a. Investigation of structural and optical properties of biosynthesized Zincite (ZnO) nanoparticles (NPs) via an aqueous extract of Rosmarinus officinalis (rosemary) leaves. MRS Adv 5: 2349–2358. https://doi.org/ 10.1557/adv.2020.220 [CrossRef] [Google Scholar]
- Noukelag SK, Mohamed HEA, Moussa B, Razanamahandry LC, Ntwampe SKO, Arendse CJ. 2020b. Bio-inspired synthesis of PbO nanoparticles (NPs) via an aqueous extract of Rosmarinus officinalis (rosemary) leaves. Mater Today: Proc 36: 421-426. https://doi.org/10.1016/j.matpr.2020.04.852 [Google Scholar]
- Noukelag SK, Mohamed HEA, Moussa B, Razanamahandry LC, Ntwampe SKO, Arendse CJ. 2020c. Structural and optical investigations of biosynthesized bunsenite NiO nanoparticles (NPs) via an aqueous extract of Rosmarinus officinalis (rosemary) leaves. Mater Today: Proc 36: 245-250. https://doi.org/10.1016/j. matpr.2020.03.314 [Google Scholar]
- Lee MK, Kim TG, Kim W, Sung YM. 2008. Surface plasmon resonance (SPR) electron and energy transfer in noble metal−zinc oxide composite nanocrystals. J Phys Chem C 112: 10079–10082. https://doi.org/10.1021/jp8018809 [CrossRef] [Google Scholar]
- Bechambia O, Chalbib M, Najjara W. 2015. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Appl Surf Sci 347: 414-420. https://doi.org/10.1016/j.apsusc.2015.03.049 [CrossRef] [Google Scholar]
- Yu H, Yu J, Cheng B, Zhou M. 2006. Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. J Solid State Chem 179: 349–354. https://doi.org/10.1016/j.jssc.2005.10.024 [CrossRef] [Google Scholar]
- Dressel M, Gruner G. 2002. Electrodynamics of solids, optical properties of electron in matter. Cambridge University Press, Cambridge, pp 159–165. [Google Scholar]
- Krayaoui MA, Mhamdi H, Labidi K, Boukhachem A, Boubaker K, Amlouk M, Choturou R. 2015. Some physical investigation on silver–ZnO doped sprayed thin films. Mat Sci Semicon Proc 30: 255–262. https://doi.org/10.1016/j.mssp.2014.09.017 [CrossRef] [Google Scholar]
- Liang YM, Guo N, Li L, Li R, Ji GJ, Gan S. 2016a. Facile synthesis of Ag/ZnO micro- flowers and their improved ultraviolet and visible light photocatalytic activity. New J Chem 40: 1587–1594. https://doi.org/10.1039/C5NJ02388B [CrossRef] [Google Scholar]
- Liang P, Zhang C, Sun H, Liu SM, Tadé M, Wang SB. 2016b. Photocatalysis of C, N- doped ZnO derived from ZIF-8 for dye degradation and water oxidation. RSC Adv 6: 95903-95909. https://doi.org/10.1039/C6RA20667K [Google Scholar]
- da Silva-Neto ML, de Oliveira MCA, Dominguez CT, Lins REM, Rakov N, de Araújo CB, de Souza Menezes L, de Oliveira HP, Gomes ASL. 2019. UV random laser emission from fexible ZnO-Ag-enriched electrospun cellulose acetate fiber matrix. Sci Rep 9: 11765. https://doi.org/10.1038/s41598-019-48056-w. [CrossRef] [PubMed] [Google Scholar]
- Liu JF, Liu EZ, Wang H, Su NH, Qi J, Jiang JZ. 2009. Surface magnetism in amine- capped ZnO nanoparticles. Nanotechnology 20: 165702. http://dx.doi.org/10.1088/0957-4484/20/16/165702. [CrossRef] [PubMed] [Google Scholar]
- Ganguly BN, Dutta S, Roy S, Röder J, Johnston K, Martin M, ISOLDE Collaboration. 2015. Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC. Nucl Instrum Methods Phys Res B 362: 103-109. https://doi.org/10.1016/j.nimb.2015.08.098. [CrossRef] [Google Scholar]
- Zhu Y, Apostoluk A, Gautier P, Valette A, Omar L, Cornier T, Bluet JM, Masenelli-Varlot K, Daniele S, Masenelli B. 2016. Intense visible emission from ZnO/PAAX (X = H or Na) nanocomposite synthesized via a simple and scalable sol-gel method. Sci Rep 6: 23557. https://doi.org/10.1038/srep23557. [CrossRef] [PubMed] [Google Scholar]
- Gayathri S, Ghosh OS, Sathishkumar S, Sudhakara P, Jayaramudu J, Ray SS, Viswanath AK. 2015. Investigation of physicochemical properties of Ag doped ZnO nanoparticles prepared by chemical route. Appl Sci Lett 1: 8-13. [Google Scholar]
- Georgekutty R, Seery MK, Pillai SC. 2008. A highly efcient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112: 13563–13570. https://doi.org/10.1021/jp802729a [CrossRef] [Google Scholar]
- Pudukudy M, Yaakob Z. 2013. Hydrothermal synthesis of mesostructured ZnO micropyramids with enhanced photocatalytic performance. Superlattice Microstruc 63: 47–57. https://doi.org/10.1016/j.spmi.2013.08.007 [CrossRef] [Google Scholar]
- Djurisic AB, Choy WCH, Roy VSL, Leung YH, Kwong CH, Cheah KW, Rao TKG, Chan WK, Lui HK, Syrya C. 2004. Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures. Adv Funct Mater 14: 856-86. https://doi.org/10.1002/adfm.200305082 [CrossRef] [Google Scholar]
- Thongjamroon S, Ding J, Herng TS, Tang IM, Thongmee S. 2017. Dependence of the magnetic properties of the dilute magnetic semiconductor Zn1−xMnxO nanorods on their Mn doping levels. J Magn Magn Mater 439: 391-396. https://doi.org.10.1016/j.jmmm.2017.04.087 [CrossRef] [Google Scholar]
- Robkhob P, Tang IM, Thongmee S. 2020b. Increased bound magnetic polaron formation in the dilute magnetic semiconductor Zn1-xNixO. Mater Sci & Eng B 260: 114644. http://doi.org.10.1016/j.mseb.2020.114644 [CrossRef] [Google Scholar]
- Nakarungsee P, Srirattanapibul S, Issro C, Tang IM, Thongmee S. 2020. High performance Cr doped ZnO by UV for NH3 gas sensor. Sens Actuators A: Phys A 314: 112230. http://doi.org.10.1016/j.sna.2020.112230 [CrossRef] [Google Scholar]
- Patil SS, Mali MG, Tambolt MS, Patil DR, Kulkarni MV, Yoon H, Kim H, Al-Deyab SS, Yoon SS, Kolekar SS, Kale BB. 2019. Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight. Catal. Today 260: 126-134. https://doi.org/10.1016/j.cattod.2015.06.004 [Google Scholar]
- Liu Y, Zhang Q, Xu M, Yuan H, Chen Y, Zhang J, Luo K, Zhang J, You B. 2019. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl Surf Sci 476: 632-640. https://doi.org/10.1016/j.apsusc.2019.01.137 [CrossRef] [Google Scholar]
- Al-Ekabi H, Serpone N. 1988. Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J Phys Chem 92: 5726–5731. https://doi.org/10.1021/j100331a036 [CrossRef] [Google Scholar]
- Liqiang J, Dejun W, Baiqi W, Shudan L, Baifu X, Honggang F, Jiazhong S. 2006. Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles. J Mol Catal A: Chem 244: 193–200. https://doi.org.10.1016/j.molcata.2005.09.020 [CrossRef] [Google Scholar]
- Sarma B, Sarma BK. 2017. Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system. Appl Surf Sci 410: 557–565. https://doi.org/10.1016/j.apsusc.2017.03.154 [CrossRef] [Google Scholar]
- Kuriakose S, Choudhary V, Satpati B, Mohapatra S. 2014a. Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method. Beilst J Nanotechnol 5: 639–650. https:// doi.org/10.3762/bjnano.5.75 [CrossRef] [Google Scholar]
- Chen T, Zheng Y, Lin J, Chen G. 2008. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. Journal of the American Society for Mass Spectrometry 19: 997–1003. https://doi.org/10.1016/j.jasms.2008.03.008 [CrossRef] [PubMed] [Google Scholar]
- Morales-Flores N, Pal U, Sanchez Mora E. 2011. Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation. Appl Catal A Gen 394: 269–275. https://doi.org/10.1016/j.apcata.2011.01.011 [CrossRef] [Google Scholar]
- Kuriakose S, Choudhary V, Satpati B, Mohapatra S. 2014b. Facile synthesis of Ag–ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange. Phys Chem Chem Phys 16: 17560–17568. https://doi.org/10.1039/C4CP02228A [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Du L, Yu X, Tan S, Cai X, Yang P, Gu Y, Mai W. 2014. Significantly enhanced photocatalytic activities and charge separation mechanism of decorated ZnO–graphene oxide nanocomposites. ACS Appl Mater Interf 6: 3623–3629. https://doi.org/10.1021/am405872r [CrossRef] [PubMed] [Google Scholar]
- Bloch K, Mohammed SM, Karmakar S, Shukla S, Asok A, Banerjee K, Patil-Sawant R, Mohd Kaus NH, Thongmee S, Ghosh S. 2022. Catalytic dye degradation by novel phytofabricated silver/zinc oxide composites. Front Chem 10: 1013077. https://doi.org/10.3389/fchem.2022.1013077 [CrossRef] [PubMed] [Google Scholar]
- Gopi, Pasala, Suresh Srinivasan, and Murugaperumal Krishnamoorthy. “Disk margin based robust stability analysis of a DC motor drive.” Engineering Science and Technology, an International Journal 32 (2022): 101074. [CrossRef] [Google Scholar]
- Gami B, Bloch K, Mohammed SM, Karmakar S, Shukla S, Asok A, Thongmee S, Ghosh S. 2022. Leucophyllum frutescens mediated synthesis of silver and gold nanoparticles for catalytic dye degradation. Front Chem 10: 932416. https://doi.org/10.3389/fchem.2022.932416 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.